Evaluación de la precisión de la configuración de dos sistemas de posicionamiento local de ultra-banda ancha, seis antenas y 18 Hz frente a ocho antenas y 33 Hz, para medir patrones de movimiento en el deporte
Assessment of the configuration accuracy of two UWB in sport
DOI:
https://doi.org/10.33414/rtyc.44.42-51.2022Palabras clave:
Sistema de posicionamiento local, EPTS, Tecnología, frecuencia de muestreo, ultra-banda anchaResumen
El uso de sistemas válidos, precisos y fiables es decisivo para garantizar una recogida de datos óptima y una interpretación correcta de los datos. Entre otros factores, parece que la frecuencia de muestreo y el número de antenas determinan la precisión de los datos utilizando sistemas de posicionamiento local (LPS). Por lo tanto, el objetivo de este estudio fue evaluar y comparar la precisión de dos configuraciones ultra banda ancha (UWB) (UWB6_18HZ: 6 antenas y 18 Hz de capacidad frente a UWB8_33HZ: 8 antenas y 33 Hz de capacidad) para medir los patrones de movimiento en los deportes. Un jugador de fútbol sano y bien entrenado (edad: 38 años, masa: 76,34 kg, altura 1,85 m) corrió 9 m a lo largo de la línea media de una cancha de voleibol (n = 10 recorridos, muestras = 424). Las configuraciones UWB6_18HZ y UWB8_33HZ han mostrado una alta precision (diferencia media entre las mediciones reales y UWB = 0.014 ± 0.03m frente a UWB6_18HZ y 0.013 ± 0.03m para UWB8_33HZ), aunque UWB8_33HZ presentó mayor precisión (8.99 ± 0.03 m_18HZ_18) que UWB6_18HZ (8,94 ± 0,03). Por lo tanto, los fabricantes deben considerar desarrollos futuros basados frecuencias de muestreo y número de antenas instaladas alrededor de la cancha.
Descargas
Citas
Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M., & Al-Khalifa, H. (2016). Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors, 16(5), 707. https://doi.org/10.3390/s16050707
Atkinson, G., & Nevill, A. M. (1998). Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Medicine, 26(4), 217–238. https://doi.org/10.2165/00007256-199826040-00002
Bastida-Castillo, A.; Gómez Carmona, C. D.; De la Cruz Sánche, E., & Pino Ortega, J. (2018). Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. European Journal of Sport Science, 1–8. https://doi.org/10.1080/17461391.2018.1427796
Bastida-Castillo, A.; Gómez-Carmona, C. D.; Pino Ortega, J., & de la Cruz Sánchez, E. (2017). Validity of an inertial system to measure sprint time and sport task time: A proposal for the integration of photocells in an inertial system. International Journal of Performance Analysis in Sport, 17(4), 600–608. https://doi.org/10.1080/24748668.2017.1374633
Bastida-Castillo, A.; Gómez-Carmona, C. D.; De La Cruz Sánchez, E., & Pino-Ortega, J. (2019). Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. European Journal of Sport Science, 19(9), 1157–1165. https://doi.org/10.1080/17461391.2019.1584248
Bastida-Castillo, A.; Gómez-Carmona, C.; De la Cruz-Sánchez, E.; Reche-Royo, X.; Ibáñez, S., & Pino Ortega, J. (2019). Accuracy and Inter-Unit Reliability of Ultra-Wide-Band Tracking System in Indoor Exercise. Applied Sciences, 9(5), 939. https://doi.org/10.3390/app9050939
Bland, J. M., & Altman, DouglasG. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307–310. https://doi.org/10.1016/S0140-6736(86)90837-8
Cummins, C.; Orr, R.; O’Connor, H., & West, C. (2013). Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports Medicine, 43(10), 1025–1042. https://doi.org/10.1007/s40279-013-0069-2
Dogramaci, S. N.; Watsford, M. L., & Murphy, A. J. (2011). The Reliability and Validity of Subjective Notational Analysis in Comparison to Global Positioning System Tracking to Assess Athlete Movement Patterns. Journal of Strength and Conditioning Research, 25(3), 852–859. https://doi.org/10.1519/JSC.0b013e3181c69edd
Duarte, R.; Araújo, D.; Fernandes, O.; Fonseca, C.; Correia, V.; Gazimba, V.; Travassos, B.; Esteves, P.; Vilar, L., & Lopes, J. (2010). Capturing complex human behaviors in representative sports contexts with a single camera. Medicina, 46(6), 408. https://doi.org/10.3390/medicina46060057
Jackson, B. M.; Polglaze, T.; Dawson, B.; King, T., & Peeling, P. (2018). Comparing Global Positioning System and Global Navigation Satellite System Measures of Team-Sport Movements. International Journal of Sports Physiology and Performance, 13(8), 1005–1010. https://doi.org/10.1123/ijspp.2017-0529
Leser, R.; Baca, A., & Ogris, G. (2011). Local Positioning Systems in (Game) Sports. Sensors, 11(10), 9778–9797. https://doi.org/10.3390/s111009778
Linke, D.; Link, D., & Lames, M. (2018). Validation of electronic performance and tracking systems EPTS under field conditions. PLOS ONE, 13(7), e0199519. https://doi.org/10.1371/journal.pone.0199519
Malone, J. J.; Lovell, R.; Varley, M. C., & Coutts, A. J. (2017). Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. International Journal of Sports Physiology and Performance, 12(Suppl 2), 18–26. https://doi.org/10.1123/ijspp.2016-0236
Ogris, G.; Leser, R.; Horsak, B.; Kornfeind, P.; Heller, M., & Baca, A. (2012). Accuracy of the LPM tracking system considering dynamic position changes. Journal of Sports Sciences, 30(14), 1503–1511. https://doi.org/10.1080/02640414.2012.712712
Pons, E.; García-Calvo, T.; Resta, R.; Blanco, H.; López del Campo, R.; Díaz García, J., & Pulido, J. J. (2019). A comparison of a GPS device and a multi-camera video technology during official soccer matches: Agreement between systems. PLOS ONE, 14(8), e0220729. https://doi.org/10.1371/journal.pone.0220729
Reche-Soto, P.; Cardona-Nieto, D.; Diaz-Suarez, A.; Bastida-Castillo, A.; Gomez-Carmona, C.; Garcia-Rubio, J., & Pino-Ortega, J. (2019). Player Load and Metabolic Power Dynamics as Load Quantifiers in Soccer. Journal of Human Kinetics, 13.
Rico-González, M.; Los Arcos, A.; Rojas-Valverde, D.; Clemente, F. M., & Pino-Ortega, J. (2020). A Survey to Assess the Quality of the Data Obtained by Radio-Frequency Technologies and Microelectromechanical Systems to Measure External Workload and Collective Behavior Variables in Team Sports. Sensors, 16.
Rico-González, M.; Los Arcos, A.; Nakamura, F. Y.; Moura, F. A., & Pino-Ortega, J. (2020). The use of technology and sampling frequency to measure variables of tactical positioning in team sports: A systematic review. Research in Sports Medicine, 28(2), 279–292. https://doi.org/10.1080/15438627.2019.1660879
Rico-González, M.; Pino-Ortega, J.; Nakamura, F. Y.; Moura, F. A.; Rojas-Valverde, D., & Los Arcos, A. (2020). Past, present, and future of the technological tracking methods to assess tactical variables in team sports: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 175433712093202. https://doi.org/10.1177/1754337120932023
Serpiello, F. R.; Hopkins, W. G.; Barnes, S.; Tavrou, J.; Duthie, G. M.; Aughey, R. J., & Ball, K. (2018). Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. Journal of Sports Sciences, 36(15), 1727–1733. https://doi.org/10.1080/02640414.2017.1411867
Stevens, T. G. A.; de Ruiter, C. J.; van Niel, C.; van de Rhee, R.; Beek, P. J., & Savelsbergh, G. J. P. (2014). Measuring Acceleration and Deceleration in Soccer-Specific Movements Using a Local Position Measurement (LPM) System. International Journal of Sports Physiology and Performance, 9(3), 446–456. https://doi.org/10.1123/ijspp.2013-0340
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Markel Rico-González, Asier Los Arcos, Alejandro Bastida-Castillo, José Pino-Ortega
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.