Avaliação da precisão da configuração de dois sistemas de posicionamento local de banda ultralarga, seis antenas e 18 Hz versus oito antenas e 33 Hz, para medir padrões de movimento no esporte

Assessment of the configuration accuracy of two UWB in sport

Autores

  • Markel Rico-González Department of Didactics of Musical, Plastic and Corporal Expression, University of the Basque Country, UPV-EHU. Leioa - Spain https://orcid.org/0000-0002-9849-0444
  • Asier Los Arcos Society, Sports and Physical Exercise Research Group (GIKAFIT). Department of Physical Education and Sport. Faculty of Education and Sport. University of the Basque Country - Spain
  • Alejandro Bastida-Castillo Faculty of Sports Sciences. University of Murcia, San Javier - Spain
  • José Pino-Ortega Faculty of Sports Sciences. University of Murcia, San Javier - Spain

DOI:

https://doi.org/10.33414/rtyc.44.42-51.2022

Palavras-chave:

Sistema de Posicionamento Local, EPTS, Tecnologia, taxa de amostragem, ultra banda larga

Resumo

O uso de sistemas válidos, precisos e confiáveis ​​é fundamental para garantir a coleta de dados ideal e a interpretação correta dos dados. Entre outros fatores, verifica-se que a frequência de amostragem e o número de antenas determinam a precisão dos dados utilizando Sistemas de Posicionamento Local (LPS). Portanto, o objetivo deste estudo foi avaliar e comparar a precisão de duas configurações de banda ultralarga (UWB) (UWB6_18HZ: 6 antenas e capacidade de 18 Hz vs. UWB8_33HZ: 8 antenas e capacidade de 33 Hz) para medir os padrões de movimento em Esportes. Um jogador de futebol saudável e bem treinado (idade: 38 anos, massa: 76,34 kg, altura 1,85 m) correu 9 m ao longo da linha média de uma quadra de vôlei (n = 10 corridas, amostras = 424 ). As configurações UWB6_18HZ e UWB8_33HZ mostraram alta precisão (diferença média entre as medições reais e UWB = 0,014 ± 0,03m vs. UWB6_18HZ e 0,013 ± 0,03m para UWB8_33HZ), embora UWB8_33HZ tenha apresentado maior precisão (8,99 UWB ± 0,03 m_18HZ_18) do que 0,03). Portanto, os fabricantes devem considerar desenvolvimentos futuros com base nas taxas de amostragem e no número de antenas instaladas ao redor do campo.

Downloads

Não há dados estatísticos.

Referências

Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M., & Al-Khalifa, H. (2016). Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors, 16(5), 707. https://doi.org/10.3390/s16050707

Atkinson, G., & Nevill, A. M. (1998). Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Medicine, 26(4), 217–238. https://doi.org/10.2165/00007256-199826040-00002

Bastida-Castillo, A.; Gómez Carmona, C. D.; De la Cruz Sánche, E., & Pino Ortega, J. (2018). Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. European Journal of Sport Science, 1–8. https://doi.org/10.1080/17461391.2018.1427796

Bastida-Castillo, A.; Gómez-Carmona, C. D.; Pino Ortega, J., & de la Cruz Sánchez, E. (2017). Validity of an inertial system to measure sprint time and sport task time: A proposal for the integration of photocells in an inertial system. International Journal of Performance Analysis in Sport, 17(4), 600–608. https://doi.org/10.1080/24748668.2017.1374633

Bastida-Castillo, A.; Gómez-Carmona, C. D.; De La Cruz Sánchez, E., & Pino-Ortega, J. (2019). Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. European Journal of Sport Science, 19(9), 1157–1165. https://doi.org/10.1080/17461391.2019.1584248

Bastida-Castillo, A.; Gómez-Carmona, C.; De la Cruz-Sánchez, E.; Reche-Royo, X.; Ibáñez, S., & Pino Ortega, J. (2019). Accuracy and Inter-Unit Reliability of Ultra-Wide-Band Tracking System in Indoor Exercise. Applied Sciences, 9(5), 939. https://doi.org/10.3390/app9050939

Bland, J. M., & Altman, DouglasG. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307–310. https://doi.org/10.1016/S0140-6736(86)90837-8

Cummins, C.; Orr, R.; O’Connor, H., & West, C. (2013). Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports Medicine, 43(10), 1025–1042. https://doi.org/10.1007/s40279-013-0069-2

Dogramaci, S. N.; Watsford, M. L., & Murphy, A. J. (2011). The Reliability and Validity of Subjective Notational Analysis in Comparison to Global Positioning System Tracking to Assess Athlete Movement Patterns. Journal of Strength and Conditioning Research, 25(3), 852–859. https://doi.org/10.1519/JSC.0b013e3181c69edd

Duarte, R.; Araújo, D.; Fernandes, O.; Fonseca, C.; Correia, V.; Gazimba, V.; Travassos, B.; Esteves, P.; Vilar, L., & Lopes, J. (2010). Capturing complex human behaviors in representative sports contexts with a single camera. Medicina, 46(6), 408. https://doi.org/10.3390/medicina46060057

Jackson, B. M.; Polglaze, T.; Dawson, B.; King, T., & Peeling, P. (2018). Comparing Global Positioning System and Global Navigation Satellite System Measures of Team-Sport Movements. International Journal of Sports Physiology and Performance, 13(8), 1005–1010. https://doi.org/10.1123/ijspp.2017-0529

Leser, R.; Baca, A., & Ogris, G. (2011). Local Positioning Systems in (Game) Sports. Sensors, 11(10), 9778–9797. https://doi.org/10.3390/s111009778

Linke, D.; Link, D., & Lames, M. (2018). Validation of electronic performance and tracking systems EPTS under field conditions. PLOS ONE, 13(7), e0199519. https://doi.org/10.1371/journal.pone.0199519

Malone, J. J.; Lovell, R.; Varley, M. C., & Coutts, A. J. (2017). Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. International Journal of Sports Physiology and Performance, 12(Suppl 2), 18–26. https://doi.org/10.1123/ijspp.2016-0236

Ogris, G.; Leser, R.; Horsak, B.; Kornfeind, P.; Heller, M., & Baca, A. (2012). Accuracy of the LPM tracking system considering dynamic position changes. Journal of Sports Sciences, 30(14), 1503–1511. https://doi.org/10.1080/02640414.2012.712712

Pons, E.; García-Calvo, T.; Resta, R.; Blanco, H.; López del Campo, R.; Díaz García, J., & Pulido, J. J. (2019). A comparison of a GPS device and a multi-camera video technology during official soccer matches: Agreement between systems. PLOS ONE, 14(8), e0220729. https://doi.org/10.1371/journal.pone.0220729

Reche-Soto, P.; Cardona-Nieto, D.; Diaz-Suarez, A.; Bastida-Castillo, A.; Gomez-Carmona, C.; Garcia-Rubio, J., & Pino-Ortega, J. (2019). Player Load and Metabolic Power Dynamics as Load Quantifiers in Soccer. Journal of Human Kinetics, 13.

Rico-González, M.; Los Arcos, A.; Rojas-Valverde, D.; Clemente, F. M., & Pino-Ortega, J. (2020). A Survey to Assess the Quality of the Data Obtained by Radio-Frequency Technologies and Microelectromechanical Systems to Measure External Workload and Collective Behavior Variables in Team Sports. Sensors, 16.

Rico-González, M.; Los Arcos, A.; Nakamura, F. Y.; Moura, F. A., & Pino-Ortega, J. (2020). The use of technology and sampling frequency to measure variables of tactical positioning in team sports: A systematic review. Research in Sports Medicine, 28(2), 279–292. https://doi.org/10.1080/15438627.2019.1660879

Rico-González, M.; Pino-Ortega, J.; Nakamura, F. Y.; Moura, F. A.; Rojas-Valverde, D., & Los Arcos, A. (2020). Past, present, and future of the technological tracking methods to assess tactical variables in team sports: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 175433712093202. https://doi.org/10.1177/1754337120932023

Serpiello, F. R.; Hopkins, W. G.; Barnes, S.; Tavrou, J.; Duthie, G. M.; Aughey, R. J., & Ball, K. (2018). Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. Journal of Sports Sciences, 36(15), 1727–1733. https://doi.org/10.1080/02640414.2017.1411867

Stevens, T. G. A.; de Ruiter, C. J.; van Niel, C.; van de Rhee, R.; Beek, P. J., & Savelsbergh, G. J. P. (2014). Measuring Acceleration and Deceleration in Soccer-Specific Movements Using a Local Position Measurement (LPM) System. International Journal of Sports Physiology and Performance, 9(3), 446–456. https://doi.org/10.1123/ijspp.2013-0340

Publicado

2022-06-08

Como Citar

Rico-González, M., Los Arcos, A., Bastida-Castillo, A., & Pino-Ortega, J. (2022). Avaliação da precisão da configuração de dois sistemas de posicionamento local de banda ultralarga, seis antenas e 18 Hz versus oito antenas e 33 Hz, para medir padrões de movimento no esporte: Assessment of the configuration accuracy of two UWB in sport. Revista De Tecnologia E Ciência, (44), 42–51. https://doi.org/10.33414/rtyc.44.42-51.2022