Assessment of the configuration accuracy of two UWB local positioning systems, six antennae and 18 Hz vs. eight antennae and 33 Hz, to measure movement patterns in physical education
Assessment of the configuration accuracy of two UWB in sport
DOI:
https://doi.org/10.33414/rtyc.44.42-51.2022Keywords:
Local positioning system, electronic performance and tracking system, technology, sampling frequency, ultra-wide bandAbstract
The use of valid, accurate and reliable systems is decisive for ensuring optimal data collection and correct interpretation of values. Among other factors, it seems that sampling rate and the number of nodes determine data accuracy using LPS. Thus, the aim of this study was to assess and compare the accuracy of two UWB configurations (i.e. UWB6_18HZ: 6 antennae and 18 Hz capacity vs. UWB8_33HZ: 8 antennae and 33 Hz capacity) to measure locomotion on court. A healthy and well-trained former soccer player (age: 38 years, mass: 76.34 kg, height 1.85 m) ran 9 m along the middle line of a volleyball court (n=10, samples= 424). UWB6_18HZ and UWB8_33HZ configurations have shown high accuracy in sport movement patterns monitoring (mean difference between actual measurements and UWB = 0.014±0.03m for UWB6_18HZ and 0.013±0.03m for UWB8_33HZ), although UWB8_33HZ presented higher accuracy (8.99±0.03 m) than UWB6_18HZ (8.94±0.03). Therefore, manufacturers should consider future developments based on sampling rates and number of antennae installed around the court.
Downloads
References
Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M., & Al-Khalifa, H. (2016). Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors, 16(5), 707. https://doi.org/10.3390/s16050707
Atkinson, G., & Nevill, A. M. (1998). Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Medicine, 26(4), 217–238. https://doi.org/10.2165/00007256-199826040-00002
Bastida-Castillo, A.; Gómez Carmona, C. D.; De la Cruz Sánche, E., & Pino Ortega, J. (2018). Accuracy, intra- and inter-unit reliability, and comparison between GPS and UWB-based position-tracking systems used for time-motion analyses in soccer. European Journal of Sport Science, 1–8. https://doi.org/10.1080/17461391.2018.1427796
Bastida-Castillo, A.; Gómez-Carmona, C. D.; Pino Ortega, J., & de la Cruz Sánchez, E. (2017). Validity of an inertial system to measure sprint time and sport task time: A proposal for the integration of photocells in an inertial system. International Journal of Performance Analysis in Sport, 17(4), 600–608. https://doi.org/10.1080/24748668.2017.1374633
Bastida-Castillo, A.; Gómez-Carmona, C. D.; De La Cruz Sánchez, E., & Pino-Ortega, J. (2019). Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer. European Journal of Sport Science, 19(9), 1157–1165. https://doi.org/10.1080/17461391.2019.1584248
Bastida-Castillo, A.; Gómez-Carmona, C.; De la Cruz-Sánchez, E.; Reche-Royo, X.; Ibáñez, S., & Pino Ortega, J. (2019). Accuracy and Inter-Unit Reliability of Ultra-Wide-Band Tracking System in Indoor Exercise. Applied Sciences, 9(5), 939. https://doi.org/10.3390/app9050939
Bland, J. M., & Altman, DouglasG. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307–310. https://doi.org/10.1016/S0140-6736(86)90837-8
Cummins, C.; Orr, R.; O’Connor, H., & West, C. (2013). Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports Medicine, 43(10), 1025–1042. https://doi.org/10.1007/s40279-013-0069-2
Dogramaci, S. N.; Watsford, M. L., & Murphy, A. J. (2011). The Reliability and Validity of Subjective Notational Analysis in Comparison to Global Positioning System Tracking to Assess Athlete Movement Patterns. Journal of Strength and Conditioning Research, 25(3), 852–859. https://doi.org/10.1519/JSC.0b013e3181c69edd
Duarte, R.; Araújo, D.; Fernandes, O.; Fonseca, C.; Correia, V.; Gazimba, V.; Travassos, B.; Esteves, P.; Vilar, L., & Lopes, J. (2010). Capturing complex human behaviors in representative sports contexts with a single camera. Medicina, 46(6), 408. https://doi.org/10.3390/medicina46060057
Jackson, B. M.; Polglaze, T.; Dawson, B.; King, T., & Peeling, P. (2018). Comparing Global Positioning System and Global Navigation Satellite System Measures of Team-Sport Movements. International Journal of Sports Physiology and Performance, 13(8), 1005–1010. https://doi.org/10.1123/ijspp.2017-0529
Leser, R.; Baca, A., & Ogris, G. (2011). Local Positioning Systems in (Game) Sports. Sensors, 11(10), 9778–9797. https://doi.org/10.3390/s111009778
Linke, D.; Link, D., & Lames, M. (2018). Validation of electronic performance and tracking systems EPTS under field conditions. PLOS ONE, 13(7), e0199519. https://doi.org/10.1371/journal.pone.0199519
Malone, J. J.; Lovell, R.; Varley, M. C., & Coutts, A. J. (2017). Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. International Journal of Sports Physiology and Performance, 12(Suppl 2), 18–26. https://doi.org/10.1123/ijspp.2016-0236
Ogris, G.; Leser, R.; Horsak, B.; Kornfeind, P.; Heller, M., & Baca, A. (2012). Accuracy of the LPM tracking system considering dynamic position changes. Journal of Sports Sciences, 30(14), 1503–1511. https://doi.org/10.1080/02640414.2012.712712
Pons, E.; García-Calvo, T.; Resta, R.; Blanco, H.; López del Campo, R.; Díaz García, J., & Pulido, J. J. (2019). A comparison of a GPS device and a multi-camera video technology during official soccer matches: Agreement between systems. PLOS ONE, 14(8), e0220729. https://doi.org/10.1371/journal.pone.0220729
Reche-Soto, P.; Cardona-Nieto, D.; Diaz-Suarez, A.; Bastida-Castillo, A.; Gomez-Carmona, C.; Garcia-Rubio, J., & Pino-Ortega, J. (2019). Player Load and Metabolic Power Dynamics as Load Quantifiers in Soccer. Journal of Human Kinetics, 13.
Rico-González, M.; Los Arcos, A.; Rojas-Valverde, D.; Clemente, F. M., & Pino-Ortega, J. (2020). A Survey to Assess the Quality of the Data Obtained by Radio-Frequency Technologies and Microelectromechanical Systems to Measure External Workload and Collective Behavior Variables in Team Sports. Sensors, 16.
Rico-González, M.; Los Arcos, A.; Nakamura, F. Y.; Moura, F. A., & Pino-Ortega, J. (2020). The use of technology and sampling frequency to measure variables of tactical positioning in team sports: A systematic review. Research in Sports Medicine, 28(2), 279–292. https://doi.org/10.1080/15438627.2019.1660879
Rico-González, M.; Pino-Ortega, J.; Nakamura, F. Y.; Moura, F. A.; Rojas-Valverde, D., & Los Arcos, A. (2020). Past, present, and future of the technological tracking methods to assess tactical variables in team sports: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 175433712093202. https://doi.org/10.1177/1754337120932023
Serpiello, F. R.; Hopkins, W. G.; Barnes, S.; Tavrou, J.; Duthie, G. M.; Aughey, R. J., & Ball, K. (2018). Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. Journal of Sports Sciences, 36(15), 1727–1733. https://doi.org/10.1080/02640414.2017.1411867
Stevens, T. G. A.; de Ruiter, C. J.; van Niel, C.; van de Rhee, R.; Beek, P. J., & Savelsbergh, G. J. P. (2014). Measuring Acceleration and Deceleration in Soccer-Specific Movements Using a Local Position Measurement (LPM) System. International Journal of Sports Physiology and Performance, 9(3), 446–456. https://doi.org/10.1123/ijspp.2013-0340
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Markel Rico-González, Asier Los Arcos, Alejandro Bastida-Castillo, José Pino-Ortega
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.