Extração de lipídios de microalgas: um novo método em escala de laboratório dentro de uma abordagem de biorrefinaria (fracionamento)

Autores

  • Andrea Natalia Pila Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina https://orcid.org/0000-0003-1702-9216
  • Maria Carolina Cuello Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina
  • Roberto Martin Schmitd Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina
  • Ester Chamorro Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina

DOI:

https://doi.org/10.33414/rtyc.45.31-45.2022

Palavras-chave:

Microalgae, Lipid, Fractioning, Biorefinery

Resumo

A extração e fracionamento de lipídios de microalgas tem sido objeto de estudo recorrente devido ao valor de mercado de algumas famílias de lipídios (carotenóides e xantofilas) e à oportunidade que os óleos de microalgas representam para a obtenção de biocombustíveis. A maioria dos métodos desenvolvidos para a extração total de lipídios de microalgas requer uma posterior separação das diferentes famílias (lipídios neutros, lipídios polares) para serem quantificados. Além disso, a maioria deles usa solventes tóxicos e caros.

No presente estudo, solventes menos tóxicos e amplamente utilizados na indústria, como hexano, acetona e etanol, foram testados em diferentes ordens para a extração de biomassa de microalgas de composição e teor lipídico diferentes (ou seja, três níveis diferentes de estresse nutricional ). Uma comparação dos métodos propostos por Bligh e Dyer, Folch e Hara e Radin também é apresentada. O novo método consegue a extração de lipídios totais de microalgas e a separação de famílias lipídicas simultaneamente.

Downloads

Não há dados estatísticos.

Referências

Albalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate polymers, 97(2), 253-261.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917.

Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of applied bacteriology, 72(6), 445-459.

Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of biotechnology, 141(1-2), 31-41.

Dean, A.P., Sigee, D.C., Estrada, B., Pittman, J.K., (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource technology 101, 4499–4507.

de Koning, H. W., Smith, K. R., & Last, J. M. (1985). Biomass fuel combustion and health. Bulletin of the world health organization, 63(1), 11.

de Koning, A. J., & Mol, T. H. (1989). Lipid determination in fish meal: An investigation of three standard methods applied to stabilised and non‐stabilised anchovy meals at increasing stages of maturity. Journal of the science of food and agriculture, 46(3), 259-266.

Eschenbrenner, A.B. (1945). Induction of hepatomas in mice by repeat oral administration of chloroform, with observations on sex differences. Journal of the national cancer institute, 5, 251-255.

Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological chemistry, 226(1), 497-509.

Giordano, M., Kansiz, M., Heraud, P., Beardall, J., Wood, B., & McNaughton, D. (2001). Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). Journal of phycology, 37(2), 271-279.

Gunnlaugsdottir, H., & Ackman, R. G. (1993). Three extraction methods for determination of lipids in fishmeal: Evaluation of a hexane/isopropanol method as an alternative to chloroform‐based methods. Journal of the science of food and agriculture, 61(2), 235-240.

Gutiérrez, Myriam Intoxicación por metanol MD, MSc Profesor Asistente de Toxicología Facultad de Medicina Universidad Nacional de Colombia.

Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical biochemistry, 90(1), 420-426.

Hu Q. Environmental effects on cell composition. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Publishing Ltd; 2004.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The plant journal, 54(4), 621-639.

Iverson, S. J., Lang, S. L., & Cooper, M. H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283-1287.

Khalyfa, A., Kermasha, S., & Alli, I. (1992). Extraction, purification, and characterization of chlorophylls from spinach leaves. Journal of agricultural and food chemistry, 40(2), 215-220.

Knothe, G. (2008). “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22(2), 1358-1364.

Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction method for recovery of fatty acids from lipid-producing microheterotrophs. Journal microbiology methods 43, 107–116

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193(1), 265-275.

Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology advances, 31(8), 1532-1542.

Moheimani, N. R., Borowitzka, M. A., Isdepsky, A., & Sing, S. F. (2013). Standard methods for measuring growth of algae and their composition. Algae for biofuels and energy (pp. 265-284).

Nichols, H. W., & Bold, H. C. (1965). Trichosarcina polymorpha gen. et sp. nov. Journal of phycology, 1(1), 34-38.

Ördög, V., Stirk, W.A., Bálint, P., van Staden, J., Lovász, C., (2012). Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal applied phycology 24, 907–914.

Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 156, 146-154.

Radin, N. S. (1981). [1] Extraction of tissue lipids with a solvent of low toxicity. Methods in enzymology (Vol. 72, pp. 5-7).

Reichardt, C., & Welton, T. (2011). Solvents and solvent effects in organic chemistry. John Wiley & Sons.

Ríos, S.D., Castañeda, J., Torras, C., Farriol, X., Salvadó, J. (2013). Lipid extraction methods from microalgal biomass harvested by two different paths: Screening studies toward biodiesel production. Bioresource technology, 133, 378-388

Serive, B., Kaas, R., Bérard, J. B., Pasquet, V., Picot, L., & Cadoret, J. P. (2012). Selection and optimisation of a method for efficient metabolites extraction from microalgae. Bioresource technology, 124, 311-320.

Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532-1553.

Singh, P., R. Sinha, R. Tandon, G. Tyagi, P. Khatri, L. Chandra Shekhar Reddy, N. K. Saini, R. Pathak, M. Varma-Basil, A. K. Prasad and M. Bose (2014). Revisiting a protocol for extraction of mycobacterial lipids International Journal of mycobacteriology 3(3), 168-172.

Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F, Triantaphylidès, C., Li-Beisson, Y. Peltier, G. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC biotechnology, 11(1), 7.

Skjånes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical reviews in biotechnology, 33(2), 172-215.

Smedes, F., & Thomasen, T. K. (1996). Evaluation of the Bligh & Dyer lipid determination method. Marine pollution bulletin, 32(8-9), 681-688.

Torkelson, T.R., Oyen, F. y Rowe, V.K. (1976). The toxicity of chloroform as determined by single and repeated exposure of laboratory animals. American industrial hygiene association journal, 37, 697-705.

Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery of microalgae for food and fuel. Bioresource technology, 135, 142-149.

Waterborg, J. H. (2002). The Lowry method for protein quantitation. The protein protocols handbook (pp. 7-9).

Yuan, J. P., & Chen, F. (2000). Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food chemistry, 68(4), 443-448.

Publicado

2022-12-13

Como Citar

Pila, A. N., Cuello, M. C., Schmitd, R. M. ., & Chamorro, E. (2022). Extração de lipídios de microalgas: um novo método em escala de laboratório dentro de uma abordagem de biorrefinaria (fracionamento). Revista De Tecnologia E Ciência, (45), 31–45. https://doi.org/10.33414/rtyc.45.31-45.2022