Microalgae lipid extraction: a novel lab-scale method within a biorefinery approach (fractioning)

Authors

  • Andrea Natalia Pila Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina https://orcid.org/0000-0003-1702-9216
  • Maria Carolina Cuello Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina
  • Roberto Martin Schmitd Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina
  • Ester Chamorro Centro de Investigación en Química Orgánica Biológica (Facultad Regional Resistencia, Universidad Tecnológica Nacional)-Instituto de Modelado e Innovación Tecnológica (Consejo Nacional de Investigaciones Científicas y Técnicas –Universidad Nacional del Nordeste). Resistencia, Chaco- Argentina

DOI:

https://doi.org/10.33414/rtyc.45.31-45.2022

Keywords:

Microalgae, Lipid, Fractioning, Biorefinery

Abstract

Extraction and fractioning of microalgal lipids have been recurrently studied because of the market value of certain lipid families (i.e. carotenoids and xanthophylls) and the opportunity that microalgal oils represent for obtaining biofuels. Most of the methods developed for the total extraction of microalgal lipids require a subsequent separation for the different families (i.e neutral lipids, polar lipids) to be quantified. Moreover, most of them use toxic and expensive solvents.

In the present study less toxic solvents that are widely used in the industry, such as hexane, acetone and, ethanol were tested in different orders for the extraction of microalgal biomass of different lipid composition and content (i.e. three different levels of nutritional stress). A comparison of the methods proposed by Bligh and Dyer, Folch and, Hara and Radin is also presented. The new method achieves microalgal total lipid extraction and separation of the lipid families simultaneously.

Downloads

Download data is not yet available.

References

Albalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate polymers, 97(2), 253-261.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 37(8), 911-917.

Carmichael, W. W. (1992). Cyanobacteria secondary metabolites—the cyanotoxins. Journal of applied bacteriology, 72(6), 445-459.

Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Journal of biotechnology, 141(1-2), 31-41.

Dean, A.P., Sigee, D.C., Estrada, B., Pittman, J.K., (2010). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource technology 101, 4499–4507.

de Koning, H. W., Smith, K. R., & Last, J. M. (1985). Biomass fuel combustion and health. Bulletin of the world health organization, 63(1), 11.

de Koning, A. J., & Mol, T. H. (1989). Lipid determination in fish meal: An investigation of three standard methods applied to stabilised and non‐stabilised anchovy meals at increasing stages of maturity. Journal of the science of food and agriculture, 46(3), 259-266.

Eschenbrenner, A.B. (1945). Induction of hepatomas in mice by repeat oral administration of chloroform, with observations on sex differences. Journal of the national cancer institute, 5, 251-255.

Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological chemistry, 226(1), 497-509.

Giordano, M., Kansiz, M., Heraud, P., Beardall, J., Wood, B., & McNaughton, D. (2001). Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). Journal of phycology, 37(2), 271-279.

Gunnlaugsdottir, H., & Ackman, R. G. (1993). Three extraction methods for determination of lipids in fishmeal: Evaluation of a hexane/isopropanol method as an alternative to chloroform‐based methods. Journal of the science of food and agriculture, 61(2), 235-240.

Gutiérrez, Myriam Intoxicación por metanol MD, MSc Profesor Asistente de Toxicología Facultad de Medicina Universidad Nacional de Colombia.

Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical biochemistry, 90(1), 420-426.

Hu Q. Environmental effects on cell composition. In: Richmond A, editor. Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Publishing Ltd; 2004.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The plant journal, 54(4), 621-639.

Iverson, S. J., Lang, S. L., & Cooper, M. H. (2001). Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids, 36(11), 1283-1287.

Khalyfa, A., Kermasha, S., & Alli, I. (1992). Extraction, purification, and characterization of chlorophylls from spinach leaves. Journal of agricultural and food chemistry, 40(2), 215-220.

Knothe, G. (2008). “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22(2), 1358-1364.

Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction method for recovery of fatty acids from lipid-producing microheterotrophs. Journal microbiology methods 43, 107–116

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of biological chemistry, 193(1), 265-275.

Markou, G., & Nerantzis, E. (2013). Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology advances, 31(8), 1532-1542.

Moheimani, N. R., Borowitzka, M. A., Isdepsky, A., & Sing, S. F. (2013). Standard methods for measuring growth of algae and their composition. Algae for biofuels and energy (pp. 265-284).

Nichols, H. W., & Bold, H. C. (1965). Trichosarcina polymorpha gen. et sp. nov. Journal of phycology, 1(1), 34-38.

Ördög, V., Stirk, W.A., Bálint, P., van Staden, J., Lovász, C., (2012). Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal applied phycology 24, 907–914.

Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource technology, 156, 146-154.

Radin, N. S. (1981). [1] Extraction of tissue lipids with a solvent of low toxicity. Methods in enzymology (Vol. 72, pp. 5-7).

Reichardt, C., & Welton, T. (2011). Solvents and solvent effects in organic chemistry. John Wiley & Sons.

Ríos, S.D., Castañeda, J., Torras, C., Farriol, X., Salvadó, J. (2013). Lipid extraction methods from microalgal biomass harvested by two different paths: Screening studies toward biodiesel production. Bioresource technology, 133, 378-388

Serive, B., Kaas, R., Bérard, J. B., Pasquet, V., Picot, L., & Cadoret, J. P. (2012). Selection and optimisation of a method for efficient metabolites extraction from microalgae. Bioresource technology, 124, 311-320.

Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5(5), 1532-1553.

Singh, P., R. Sinha, R. Tandon, G. Tyagi, P. Khatri, L. Chandra Shekhar Reddy, N. K. Saini, R. Pathak, M. Varma-Basil, A. K. Prasad and M. Bose (2014). Revisiting a protocol for extraction of mycobacterial lipids International Journal of mycobacteriology 3(3), 168-172.

Siaut, M., Cuiné, S., Cagnon, C., Fessler, B., Nguyen, M., Carrier, P., Beyly, A., Beisson, F, Triantaphylidès, C., Li-Beisson, Y. Peltier, G. (2011). Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC biotechnology, 11(1), 7.

Skjånes, K., Rebours, C., & Lindblad, P. (2013). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical reviews in biotechnology, 33(2), 172-215.

Smedes, F., & Thomasen, T. K. (1996). Evaluation of the Bligh & Dyer lipid determination method. Marine pollution bulletin, 32(8-9), 681-688.

Torkelson, T.R., Oyen, F. y Rowe, V.K. (1976). The toxicity of chloroform as determined by single and repeated exposure of laboratory animals. American industrial hygiene association journal, 37, 697-705.

Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. (2013). Biorefinery of microalgae for food and fuel. Bioresource technology, 135, 142-149.

Waterborg, J. H. (2002). The Lowry method for protein quantitation. The protein protocols handbook (pp. 7-9).

Yuan, J. P., & Chen, F. (2000). Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcus pluvialis. Food chemistry, 68(4), 443-448.

Downloads

Published

2022-12-13

How to Cite

Pila, A. N., Cuello, M. C., Schmitd, R. M. ., & Chamorro, E. (2022). Microalgae lipid extraction: a novel lab-scale method within a biorefinery approach (fractioning). Technology and Science Magazine, (45), 31–45. https://doi.org/10.33414/rtyc.45.31-45.2022