Iogurtes adicionados com caseinomacropeptídeo: Estudo da atividade anticariogênica
DOI:
https://doi.org/10.33414/rtyc.42.41-54.2021Palavras-chave:
caseinomacropeptídeo, iogurtes, atividade anticariogênicaResumo
Caseinomacropeptídeo é um grupo de peptídeos glicosilados que contêm ácido siálico; eles são atribuídos à atividade anticariogênica. No presente estudo, três iogurtes (experimentais) adicionados aos ingredientes-fonte desses peptídeos foram formulados em escala de laboratório: concentrado protéico de soro 80% e caseinomacropeptídeo em diferentes níveis, que foram comparados com um iogurte (controle) contendo apenas leite em pó desnatado. Aos 21 dias, foram determinados a composição físico-química, o ácido siálico e a atividade anticariogênica, esta última com teste de desmineralização in vitro utilizando hidroxiapatita como modelo dentário e dois tampões erosivos. Os iogurtes apresentaram parâmetros físico-químicos normais e níveis de ácido siálico na faixa de 28,4 a 431,7 mg / g. A proteção dos iogurtes experimentais contra o cálcio e o fósforo da hidroxiapatita foi significativamente maior em comparação com o controle; o valor de pH do tampão não influenciou a proteção.Downloads
Referências
Aimutis, W. (2004). “Bioactive properties of milk proteins with particular focus on anticariogenesis”. The Journal of Nutrition, 134 (4), 989S-995S.
Akalin, A. S., Ünal, G., Dinkci, N. y Hayaloglu, A. A. (2012). “Microestructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate”. Journal of Dairy Science, 95 (7), 3617-3628.
AOAC Official Methods of Analysis (2007) (18th ed.). Method 945.46 Ash in milk. Gaithersburg: AOAC International Publisher.
AOAC Official Methods of Analysis (2007) (18th ed.). Method 991.25 Calcium, magnesium and phosphorus in cheese. Gaithersburg: AOAC International Publisher.
Bradley, R., Arnold, E., Barbano, D., Semerad, R., Smith, D. y Vines, B. (1992). In R. T. Marshall (Ed.). Standard methods for the examination of dairy products (pp. 433 -532). Washington: American Public Health Association.
Brody, E. P. (2000). “Biological activities of bovine glycomacropeptide”. British Journal of Nutrition, 84, 39-46.
Córdova-Dávalos, L. E., Jiménez, M., y Salinas, E. (2019). “Glycomacropeptide bioactivity and health: A review highlighting action mechanisms and signaling pathways”. Nutrients, 11, 1-22.
Diario Oficial de las Comunidades Europeas. Reglamento CEE Nº 2188 (1981). Anexo IV: Presencia de suero de leche en polvo en la leche desnatada en polvo destinada al almacenamiento público mediante la determinación del ácido siálico libre, 23, 12-17.
Ferrazano, G. F., Cantile, T., Quarto, M., Ingenito, A., Chianese, L. y Addeo, F. (2008). “Protective effect of yogurt extract on dental enamel demineralization in vitro”. Australian Dental Journal, 53, 314-319.
Furlanetti, A. M. y Prata, L. F. (2003). “Free and total GMP (glycomacropeptide) contents of milk during bovine lactation”. Food Science and Technology, 23 (suppl.), 121-125.
González Sanz, A. M., González Nieto, B. A. y González Nieto, A. (2013). “Salud dental: relación entre caries dental y el consumo de alimentos”. Nutrición Hospitalaria, 28 (supl.4), 64-71.
Grenby, T., Andrews, A., Mistry, M. y Williams, R. (2001). “Dental caries protective agents in milk and milk products: investigations in vitro”. Journal of Dentistry, 29, 83-92.
Herod, E. (2009). “The effect of cheese on dental caries: A review of the literature”. Australian Dental Journal 36, 120-125.
ISO 13580/IDF 151 (2005). International Dairy Federation. Yogurt - determination of total solids contents (reference method). Brussels, Belgium.
ISO 8968-1/IDF 20-1 (2014). International Dairy Federation. Milk and milk products - determination of nitrogen content. Part 1: Kjeldahl principle and crude protein calculation. Brussels, Belgium.
Kanekanian, A., Williams, R., Brownsell, V. y Andrews, A. (2008) “Caseinophosphopeptides and dental protection: Concentration and pH studies”. Food Chemistry, 107, 1015-1021.
Karam, M. C., Gaiani, C., Hosri, C. y Burgain, J. (2013). “Effect of dairy powders fortification on yogurt textural and sensorial properties: a review”. Journal of Dairy Research, 80 (4), 400-409.
Kashket, S. y DePaola, D. (2002). “Cheese consumption and the development and progression of dental caries”. Nutrition Reviews, 60 (4), 97-103.
Li, H. y Fan, X. (2014). “Quantitative analysis of sialic acids in Chinese conventional foods by HPLC-FLD”. Open Journal of Preventive Medicine, 4 (2), 57-63.
Li, E. y Mine, Y. (2004). “Technical note: Comparison of chromatographic profile of glycomacropeptide from cheese whey isolated using different methods”. Journal of Dairy Science, 87, 174-177.
Manso, M.A. y Lopez-Fandiño, R. (2004). “k-casein macropeptides from cheese whey: physicochemical, biological, nutritional, and technological features for possible use”. Food Reviews International, 20, 329-355.
Marshall, S. C. (1991). “Casein macropeptide from whey - a new product opportunity”. Food Research Quarterly, 51, 86-91.
Neelima, Sharma, R., Rajput, Y. S., y Mann, B. (2013). “Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: a review”. Dairy Science and Technology, 93, 21-43.
Nongonierma, A. y FitzGerald, R. (2012). “Biofunctional properties of caseinophosphopeptides in the oral cavity”. Review. Caries Research, 46, 234-267.
Thomä-Worringer, C., López-Fandiño, R., y Sørensen, J. (2006). “Health effects and technological features of caseinomacropeptide”. International Dairy Journal, 16, 1324-1333.
Sady, M.; Domagala, J., Grega, T., y Najgebauer-Lejko, D. (2007). “Quality properties of non-fat yogurt with addition of whey protein concentrate”. Biotechnology in Animal Husbandry, 23 (5-6), 291-299.
Setareh Nejad, A., Kanekanian, A. y Tatham, A. (2009). “The inhibitory effect of glycomacropeptide on dental erosion”. Dairy Science and Technology, 89, 233-239.
Setareh Nejad, A., Kanekanian, A., Tatham, A. y Abedi, A. (2010). “The protective effect of caseinomacropeptide against dental erosion using hydroxyapatite as a model system”. International Dairy Journal, 20, 652-656.
Silva, M. F., Burgess, R. y Sandham, H. (1987). “Effects of cheese extract and its fractions on enamel demineralization in vitro and in vivo in humans”. Journal of Dairy Research, 66 (10), 1527-1532.
Tamime, A. Y. y Robinson’s, R. K. (2007). Yoghurt: Science and Technology. Cambridge, England: Woodhead Publishing Limited.
Warner, E., Kanekanian, A. y Andrews, A. (2001). “Bioactivity of milk proteins: 1. Anticariogenicity of whey proteins”. International Journal of Dairy Technology, 54, 151-153.
White, A. J., Gracia, L. H. y Barbour, M. E. (2011). “Inhibition of dental erosion by casein and casein-derived proteins”. Caries Research, 45 (1), 13-20.
Wolf, I. V. y Perotti, M. C. (2020). “Los productos lácteos y su rol en la salud bucal”. Tecnología Láctea Latinoamericana, 109, 50-60.
Zayadi, A., Bikarindrasari, R. y Anastasia D. (2014). “The role of yoghurt on dental erosion”. Padjadjaran Journal of Dentistry, 26 (1), 17-21.
Zhang, X., Liu, Y., Liu, L., Li, J., Du, G., Chen, J. (2019). “Microbial production of sialic acid and sialylated human milk oligosaccharides: advaces and perspectives”. Biotechnology Advances, 37 (5), 787-800.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Sofía Eugenia Perret, Claudia Inés Vénica, María Cristina Perotti, Irma Verónica Wolf
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.