Modelagem estocástica alternativa para Lotka-Volterra usando um sistema multiagente.
DOI:
https://doi.org/10.33414/rtyc.47.35-46.2023Palavras-chave:
Modelagem estocástica, predador-presa, Lotka-Volterra, sistema multiagenteResumo
Este artigo apresenta a modelagem de um ecossistema simples de presa-predador usando um sistema multiagente em que cada indivíduo de uma espécie é caracterizado como um círculo de determinado raio e massa que se move com velocidade constante em um universo plano finito. As interações entre os agentes são caracterizadas pelas áreas de sobreposição de cada agente durante seus movimentos. Esse modelo não só permite ajustar condições que mostram uma evolução temporal oscilatória acoplada de populações, típica das diferentes soluções para a equação de Lotka-Volterra, mas também gerar monitoramento de variáveis de interesse do ecossistema, como a distribuição espacial de agentes ou a densidade de biomassa.
Downloads
Referências
Barbosa, P. y Castellanos, I. (2005). “Ecology of Predator-Prey Interactions”. Nueva York: Oxford University Press, ISBN: 0195171209,9780195171204.
Beauchamp, DA., Whal, DH y Johnson, BM. (2007). “Predator–prey interactions”. Nueva York: American Fisheries Society, 765–842.
Blanchard, J. L., Heneghan R. F., Everett J. D., Trebilco R., y Richardson A. J. (2017). “From Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems”, Trends in Ecology & Evolution, 32, 174-186, ISSN 0169-5347, (2017). Disponible en < https://www.sciencedirect.com/science/article/pii/S0169534716302361>.
Bunin, G. (2017). “Ecological communities with Lotka-Volterra dynamics”. Physical Review E, 95, 042414, (2017). Disponible en < https://link.aps.org/doi/10.1103/PhysRevE.95.042414>.
Cáceres, M. (2002) “Elementos de estadística de no equilibrio y sus aplicaciones al transporte en medios desordenados”. Editorial Reverté. ISBN 978-84-291-5031-5
Dattner, I., Miller, E., Petrenko, M., Kadouri, D. E., Jurkevitch, E., y Huppert A. (2017). “Modelling and parameter inference of predator–prey dynamics in heterogeneous environments using the direct integral approach”, Journal of The Royal Society Interface, 14 (126), 20160525, (2017). Disponible en < http://doi.org/10.1098/rsif.2016.0525>.
Fjeld, R., Eisenberg, N., Compton, K (2007). “Quantitative environmental risk analysis for human” John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN-13: 978-0-471-72243-4. ISBN-10: 0-471-72243-X
Granda Velepucha, S., González Carrasco, V, López Bravo, M. (2016). "Principios de la Ecología General". Universidad técnica de Machala - Ecuador. Ediciones Utmach. ISBN: 978-9978-316-95-5.
Gilbert, N. y Terna, P. (2000)."How to build and use agent-based models in social science". Mind and Society 1(1), pp. 57-72.
Hatton, I. A., Mccann, K. S., Fryxell, J. M., Davies, T. J., Smerlak, M., Sinclair, A. R. E., y Loreau, M. (2015). “The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes”, Science, 349 (6252), aac6284.
Jiang, D., Zhang, Q., Hayat, T., y Alsaedi A. (2017). “Periodic solution for a stochastic non-autonomous competitive Lotka–Volterra model in a polluted environment” Physica A. Statistical Mechanics and its Applications, 471, 276-287.
Lotka, A. J. (1910). “Contribution to the Theory of Periodic Reactions”. The Journal of Physical Chemistry, 14 (3), 271-274.
Odum E. P. and Barrett G. W. (1953) “Fundamentals of Ecology”, This particular set of data came from scanning in the graph from Odum’s “Fundamentals of Ecology”, Chapter 6: Population ecology, Section 5: Population Fluctuations and Cyclic Oscillations, pg 249. https://archive.org/details/fundamentals-of-ecology-odum/page/248/mode/2up?view=theater.
And were found in the course: “Introduction to Mathematical Modeling” http://people.whitman.edu/~hundledr/courses/M250F03/M250.html.
Papoulis, A (1991) “Probability, random variables, and stochastic processes” 3er edición. ISBN 0-07-048477-5
Perkon, L (1991)" Diferential Equations and Dynarnical Systems" Springer.
Peterson, R. O. y J. A. Vucetich. (2022). Ecological Studies of Wolves on Isle Royale, Annual Report 2021–2022. School of Forestry and Wood Products, Michigan Technological University. Houghton, Michigan.
Portalier, S. M. J., Fussmann, G. F., Loreau, M. y Cherif M. (2019). “The mechanics of predator–prey interactions: First principles of physics predict predator–prey size ratios”, Functional Ecology 33, 323-334, (2019). Disponible en <https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2435.13254>.
Seitbekova, Y., y Bakibayev, T. (2018). “Predator-Prey Interaction Multi-Agent Modelling”, International Conference on Application of Information and Communication Technologies, AICT 2018, Almaty, Kazakhstan, 17 al 19 de octubre, 1-5.
Skvortsov, A., Ristic, B., y A. Kamenev (2018). “Predicting population extinction from early observations of the Lotka–Volterra system”, Applied Mathematics and Computation, 320, 371-379.
Spiegel, M y Stephens, L (2009) “Estadística” 4ta edición. McGRAW-HILL/INTERAMERICANA EDITORES, S.A. ISBN-13: 978-970-10-6887-8. ISBN-10: 970-10-6887-8 (ISBN 970-10-3271-3 anterior)
Strogatz S. H. (2018). “Nonlinear Dynamics And Chaos With Applications To Physics, Biology, Chemistry, And Engineering”. Boca Ratón: CRC Press Taylor & Francis Group, ISBN 13: 978-0-8133-4910-7.
T. Johannessen (2014). “From an Antagonistic to a Synergistic Predator Prey Perspective. Bifurcations in Marine Ecosystem”. Cambridge: Academic Press. ISBN: 978-0-12-417016-2.
Uchmanski, J (1987)."Resourse partitionig amoung unequal competitors". Ekol.pol. 35. 71-87
Ulanowicz R. E. (1986). “Growth and Development: Ecosystems Phenomenology”. New York, Springer-Verlag New York ISBN-13: 978-1-4612-9359-0.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Natalia Carolina Bustos, Claudia M. Sánchez, Daniel Horacio Brusa, Miguel Angel Ré, Javier Britch
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.