Alternative Stochastic Modeling to Lotka-Volterra through a Multiagent System

Authors

  • Natalia Carolina Bustos Facultad Regional Córdoba, Universidad Tecnológica Nacional - Argentina
  • Claudia Marina Sánchez Facultad Regional Córdoba, Universidad Tecnológica Nacional / Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba - Argentina
  • Daniel Horacio Brusa Facultad Regional Córdoba, Universidad Tecnológica Nacional / Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba - Argentina
  • Miguel Angel Ré Facultad Regional Córdoba, Universidad Tecnológica Nacional / Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba - Argentina
  • Javier Britch Facultad Regional Córdoba, Universidad Tecnológica Nacional - Argentina

DOI:

https://doi.org/10.33414/rtyc.47.35-46.2023

Keywords:

Stochastic Modeling, Prey-Predator, Lotka-Volterra, Multiagent System

Abstract

In this work, the modeling of a simple ecosystem of prey and predators is presented, through a multi-agent system where each individual of a species is characterized as a circle of a certain radius and mass that moves with a constant speed in a finite plane universe. The interactions between agents are characterized by the overlapping of areas of each agent during their displacements. This model not only allows adjusting conditions that show a coupled oscillatory temporal evolution of the populations, typical of the different solutions to the Lotka-Volterra equation, but also generates monitoring of variables of ecosystem interest such as the spatial distribution of agents or the density of biomass.

Downloads

Download data is not yet available.

References

Barbosa, P. y Castellanos, I. (2005). “Ecology of Predator-Prey Interactions”. Nueva York: Oxford University Press, ISBN: 0195171209,9780195171204.

Beauchamp, DA., Whal, DH y Johnson, BM. (2007). “Predator–prey interactions”. Nueva York: American Fisheries Society, 765–842.

Blanchard, J. L., Heneghan R. F., Everett J. D., Trebilco R., y Richardson A. J. (2017). “From Bacteria to Whales: Using Functional Size Spectra to Model Marine Ecosystems”, Trends in Ecology & Evolution, 32, 174-186, ISSN 0169-5347, (2017). Disponible en < https://www.sciencedirect.com/science/article/pii/S0169534716302361>.

Bunin, G. (2017). “Ecological communities with Lotka-Volterra dynamics”. Physical Review E, 95, 042414, (2017). Disponible en < https://link.aps.org/doi/10.1103/PhysRevE.95.042414>.

Cáceres, M. (2002) “Elementos de estadística de no equilibrio y sus aplicaciones al transporte en medios desordenados”. Editorial Reverté. ISBN 978-84-291-5031-5

Dattner, I., Miller, E., Petrenko, M., Kadouri, D. E., Jurkevitch, E., y Huppert A. (2017). “Modelling and parameter inference of predator–prey dynamics in heterogeneous environments using the direct integral approach”, Journal of The Royal Society Interface, 14 (126), 20160525, (2017). Disponible en < http://doi.org/10.1098/rsif.2016.0525>.

Fjeld, R., Eisenberg, N., Compton, K (2007). “Quantitative environmental risk analysis for human” John Wiley & Sons, Inc., Hoboken, New Jersey. ISBN-13: 978-0-471-72243-4. ISBN-10: 0-471-72243-X

Granda Velepucha, S., González Carrasco, V, López Bravo, M. (2016). "Principios de la Ecología General". Universidad técnica de Machala - Ecuador. Ediciones Utmach. ISBN: 978-9978-316-95-5.

Gilbert, N. y Terna, P. (2000)."How to build and use agent-based models in social science". Mind and Society 1(1), pp. 57-72.

Hatton, I. A., Mccann, K. S., Fryxell, J. M., Davies, T. J., Smerlak, M., Sinclair, A. R. E., y Loreau, M. (2015). “The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes”, Science, 349 (6252), aac6284.

Jiang, D., Zhang, Q., Hayat, T., y Alsaedi A. (2017). “Periodic solution for a stochastic non-autonomous competitive Lotka–Volterra model in a polluted environment” Physica A. Statistical Mechanics and its Applications, 471, 276-287.

Lotka, A. J. (1910). “Contribution to the Theory of Periodic Reactions”. The Journal of Physical Chemistry, 14 (3), 271-274.

Odum E. P. and Barrett G. W. (1953) “Fundamentals of Ecology”, This particular set of data came from scanning in the graph from Odum’s “Fundamentals of Ecology”, Chapter 6: Population ecology, Section 5: Population Fluctuations and Cyclic Oscillations, pg 249. https://archive.org/details/fundamentals-of-ecology-odum/page/248/mode/2up?view=theater.

And were found in the course: “Introduction to Mathematical Modeling” http://people.whitman.edu/~hundledr/courses/M250F03/M250.html.

Papoulis, A (1991) “Probability, random variables, and stochastic processes” 3er edición. ISBN 0-07-048477-5

Perkon, L (1991)" Diferential Equations and Dynarnical Systems" Springer.

Peterson, R. O. y J. A. Vucetich. (2022). Ecological Studies of Wolves on Isle Royale, Annual Report 2021–2022. School of Forestry and Wood Products, Michigan Technological University. Houghton, Michigan.

Portalier, S. M. J., Fussmann, G. F., Loreau, M. y Cherif M. (2019). “The mechanics of predator–prey interactions: First principles of physics predict predator–prey size ratios”, Functional Ecology 33, 323-334, (2019). Disponible en <https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2435.13254>.

Seitbekova, Y., y Bakibayev, T. (2018). “Predator-Prey Interaction Multi-Agent Modelling”, International Conference on Application of Information and Communication Technologies, AICT 2018, Almaty, Kazakhstan, 17 al 19 de octubre, 1-5.

Skvortsov, A., Ristic, B., y A. Kamenev (2018). “Predicting population extinction from early observations of the Lotka–Volterra system”, Applied Mathematics and Computation, 320, 371-379.

Spiegel, M y Stephens, L (2009) “Estadística” 4ta edición. McGRAW-HILL/INTERAMERICANA EDITORES, S.A. ISBN-13: 978-970-10-6887-8. ISBN-10: 970-10-6887-8 (ISBN 970-10-3271-3 anterior)

Strogatz S. H. (2018). “Nonlinear Dynamics And Chaos With Applications To Physics, Biology, Chemistry, And Engineering”. Boca Ratón: CRC Press Taylor & Francis Group, ISBN 13: 978-0-8133-4910-7.

T. Johannessen (2014). “From an Antagonistic to a Synergistic Predator Prey Perspective. Bifurcations in Marine Ecosystem”. Cambridge: Academic Press. ISBN: 978-0-12-417016-2.

Uchmanski, J (1987)."Resourse partitionig amoung unequal competitors". Ekol.pol. 35. 71-87

Ulanowicz R. E. (1986). “Growth and Development: Ecosystems Phenomenology”. New York, Springer-Verlag New York ISBN-13: 978-1-4612-9359-0.

Published

2023-07-11

How to Cite

Bustos, N. C., Sánchez, C. M., Brusa, D. H., Ré, M. A., & Britch, J. (2023). Alternative Stochastic Modeling to Lotka-Volterra through a Multiagent System. Technology and Science Magazine, (47), 35–46. https://doi.org/10.33414/rtyc.47.35-46.2023