Estimación de la covarianza de ICP para la localización de un robot diferencial mediante odometrı́a y escaneo láser

Autores/as

  • Pablo De Cristóforis Instituto de Ciencias de la Computación, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires- Argentina
  • Thomas Fischer Instituto de Ciencias de la Computación, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires- Argentina
  • Matías Nitsche Instituto de Ciencias de la Computación, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires- Argentina

DOI:

https://doi.org/10.33414/rtyc.37.134-145.2020

Palabras clave:

Localización, ICP, Covarianza

Resumen

En este trabajo se presenta un método probabilístico para resolver el problema de la localización de un robot diferencial. Se usa el Filtro Extendido de Kalman (EKF) para fusionar la información obtenida por registraciones de mediciones láser mediante ICP (IterativeClosest Point) con la información de odometría provista por encoders. Para utilizar EKF es necesario estimar la covarianza de cada fuente de información, sin embargo el algoritmo ICP no devuelve la covarianza asociada. En este artículo se describe una forma de calcular esta covarianza. Los resultados obtenidos muestran que el método de fusión de sensores resulta en una estimación más precisa de la pose del robot en comparación con las estimaciones que se podrían obtener mediante odometría e ICP individualmente.

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

22-10-2020

Cómo citar

De Cristóforis, P., Fischer, T., & Nitsche, M. (2020). Estimación de la covarianza de ICP para la localización de un robot diferencial mediante odometrı́a y escaneo láser. Revista Tecnología Y Ciencia, (37), 134–145. https://doi.org/10.33414/rtyc.37.134-145.2020