Study of Liquor from Hemicelluloses Separation Process in Black Carob Tree Sawdust Biorefinery
DOI:
https://doi.org/10.33414/rtyc.44.26-41.2022Keywords:
Optization, hemicelluloses, hydrolysis, black carob tree sawdust, biorefineryAbstract
This research work utilized pretreated black carob tree sawdust as raw material, given it is plenty of this waste in the Northeast Argentinian region and its objective was to optimize the third stage of a biorefinery process. The acid pretreatment in biorefinery processes was used to extract the maximum quantity of hemicelluloses, to retain the highest cellulose concentration in the pretreated solid and to prevent degradation of sugars contained in the process liquor. Using a central composite design of experiments optimization of hemicellulose extraction of washed partially delignified black carob tree sawdust was achieved. Results from the central composite design of experiments, with two repetitions of central point, have shown that it is possible to obtain liquor yielding 2.9% Solubilized glucose, 54.5% Solubilized xylose, and 0.3% degraded xylose, by an optimal process using 1.5% H2SO4, 7.7% solids for 15.0 min.
Downloads
References
Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., Sarazin, C., Gosselin, I. (2020). Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renewable Energy, 145, 1808-1816. https://doi.org/10.1016/j.renene.2019.07.091
Banerjee, S., Patti, A.F., Ranganathan, V., Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38-50. https://doi.org/10.1016/j.fbp.2019.06.012
Cai, B.Y., Ge, J.P., Ling, H.Z., Cheng, K.K., Ping, W.X. (2012). Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production, Biomass and Bioenergy, 36, 250-257. https://doi.org/10.1016/j.biombioe.2011.10.023
Chadni, M., Grimi, N., Bals, O., Ziegler-Devin, I., Brosse, N. (2019). Steam explosion process for the selective extraction of hemicelluloses polymers from spruce sawdust. Industrial Crops and Products, 141, 111757. https://doi.org/10.1016/j.indcrop.2019.111757
Clauser, N.M., Gutiérrez, S., Area, M.C., Felissia, F.E., Vallejos, M.E. (2016). Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chemical Engineering Research and Design, 107, 137-146. https://doi.org/10.1016/j.cherd.2015.10.050
Cuadra, D.E., (2012). Industria maderera y vulnerabilidad socioambiental: el caso de Machagai en el centro del Chaco. En A.M.H. Foschiatti, (Ed), Escenarios vulnerables del Nordeste Argentino. UNNE-CONICET, Resistencia, Chaco, 315-336.
Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., Area, M.C. (2013a). Optimization of the Pretreatment of Prosopis nigra Sawdust for the Production of Fermentable Sugars. BioResourse, 155, 66-79. https://doi.org/10.1016/j.cherd.2019.12.027
Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., Area, M.C. (2013b). Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products, 42, 363-368. https://doi.org/10.1016/j.indcrop.2012.06.019
Dagnino, E.P., Chiappero, L.R., Nicolau, V.V., Chamorro, E.R. (2020). Separation process optimisation and characterisation of lignin from black carob tree sawdust into a biorefinery. Chemical Engineering Research and Design, 155, 66-79. https://doi.org/10.1016/j.cherd.2019.12.027
Dagnino, E.P., Ruiz, C., Chamorro, E. (2018). Ensayos preliminares de deslignificación de aserrín de algarrobo negro, en vistas a la producción eficiente de azúcares fermentables. Averma. 22, 06.61-06.66.
Esposito, D., Antonietti, M. (2015). Redefining biorefinery: the search for unconventional building blocks for materials. Chem. Soc. Rev. 44, 5821–5835. 10.1039/C4CS00368C
Guo, B., Zhang, Y., Ha, S.J., Jin, Y.S., Morgenroth, E. (2012). Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresource Technology, 110, 278-287. https://doi.org/10.1016/j.biortech.2012.01.133
Jang, S.K., Kim, J.H., Jeong, H., Choi, J.H., Lee, S.M., Choi, I.G. (2018) Investigation of conditions for dilute acid pretreatment for improving xylose solubilization and glucose production by supercritical water hydrolysis from Quercus mongolica. Renewable Energy, 117, 150-156. https://doi.org/10.1016/j.renene.2017.10.015
Jin, Q., Zhang, H., Yan, L., Qu, L., Huang, H. (2011). Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions. Biomass and Bioenergy. 35, 4158-4164. https://doi.org/10.1016/j.biombioe.2011.06.050
Kim, J.W., Kim, K.S., Lee, J.S., Park, S.M., Cho, H.Y., Park, J.C., Kim, J.S. (2011) Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology, 102, 8992–8999. 10.1016/j.biortech.2011.06.068
Liu, X., Lu, M., Ai, N., Yu, F., Ji, J. (2012) Kinetic model analysis of dilute sulfuric acid-catalyzed hemicellulose hydrolysis in sweet sorghum bagasse for xylose production. Industrial Crops and Products, 38, 81-86. https://doi.org/10.1016/j.indcrop.2012.01.013
Nitsos, C.K., Choli-Papadopoulou, T., Matis, K.A., Triantafyllidis, K.S. (2016). Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 6, 110-122. https://doi.org/10.1021/acssuschemeng.6b00535
Rafiqul, I.S.M., Sakinah, A.M. (2012) Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science, 71, 431–437. https://doi.org/10.1016/j.ces.2011.11.007
Vena, P.F., Brienzo, M., García-Aparicio, M., Görgens, J.F., Rypstra, T. (2015) Dilute sulphuric acid extraction of hemicelluloses from Eucalyptus grandis and its effect on Kraft and soda-aq pulp and handsheet properties. Cellulose Chemistry and Technology, 49, 819-832. https://www.cellulosechemtechnol.ro/pdf/CCT9-10(2015)/p.819-832.pdf
Villarreal, M.L.M., Prata, A.M.R., Felipe, M.G.A., Almeida, E., Silva, J.B. (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb. Technol. 40, 17-24. https://doi.org/10.1016/j.enzmictec.2005.10.032
Wang, X., Zhuang, J., Jiang, J., Fu, Y., Qin, M., Wang, Z. (2015) Separation and purification of hemicellulose-derived saccharides from wood hydrolysate by combined process. Bioresource Technology, 196, 426-430. https://doi.org/10.1016/j.biortech.2015.07.064
Winkelhausen, E., Kuzmanova, S. (1998) Microbial Conversion of D-xylose to xylitol. Journal of Fermentation and Bioengineering, 86, 1-14. https://doi.org/10.1016/S0922-338X(98)80026-3
Zhang, Y.H.P. (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35, 367–375. https://doi.org/10.1007/s10295-007-0293-6
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eliana Paola Dagnino, Carlos Raúl Ruíz, Ester Ramona Chamorro, Alfredo Fabián Sequeira
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.