Estudo do processo de separação do licor de hemicelulose na biorrefinaria de serragem de alfarroba preta
DOI:
https://doi.org/10.33414/rtyc.44.26-41.2022Palavras-chave:
otimização, hemiceluloses, hidrólise, serragem de alfarroba preta, biorrefinariaResumo
Este trabalho de pesquisa utilizou como matéria-prima a serragem de alfarroba preta pré-tratada, um resíduo abundante na região Nordeste da Argentina, e teve como objetivo otimizar a terceira etapa de um processo de biorrefinaria. O pré-tratamento ácido em processos de biorrefinaria foi usado para extrair a quantidade máxima de hemiceluloses, reter a maior concentração de celulose no sólido pré-tratado e evitar a degradação dos açúcares contidos no licor do processo. Usando um projeto central composto de experimentos, a otimização da extração de hemicelulose de serragem de alfarroba lavada parcialmente deslignificada foi alcançada. Os resultados do delineamento composto central, com duas repetições do ponto central, mostraram que é possível obter licor com rendimento de 2,9% de glicose solubilizada, 54,5% de xilose solubilizada e 0,3% de xilose degradada, por meio de um processo ótimo. usando 1,5% de H2SO4, 7,7% de sólidos por 15,0 min.
Downloads
Referências
Alayoubi, R., Mehmood, N., Husson, E., Kouzayha, A., Tabcheh, M., Chaveriat, L., Sarazin, C., Gosselin, I. (2020). Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield. Renewable Energy, 145, 1808-1816. https://doi.org/10.1016/j.renene.2019.07.091
Banerjee, S., Patti, A.F., Ranganathan, V., Arora, A. (2019). Hemicellulose based biorefinery from pineapple peel waste: Xylan extraction and its conversion into xylooligosaccharides. Food and Bioproducts Processing, 117, 38-50. https://doi.org/10.1016/j.fbp.2019.06.012
Cai, B.Y., Ge, J.P., Ling, H.Z., Cheng, K.K., Ping, W.X. (2012). Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production, Biomass and Bioenergy, 36, 250-257. https://doi.org/10.1016/j.biombioe.2011.10.023
Chadni, M., Grimi, N., Bals, O., Ziegler-Devin, I., Brosse, N. (2019). Steam explosion process for the selective extraction of hemicelluloses polymers from spruce sawdust. Industrial Crops and Products, 141, 111757. https://doi.org/10.1016/j.indcrop.2019.111757
Clauser, N.M., Gutiérrez, S., Area, M.C., Felissia, F.E., Vallejos, M.E. (2016). Small-sized biorefineries as strategy to add value to sugarcane bagasse. Chemical Engineering Research and Design, 107, 137-146. https://doi.org/10.1016/j.cherd.2015.10.050
Cuadra, D.E., (2012). Industria maderera y vulnerabilidad socioambiental: el caso de Machagai en el centro del Chaco. En A.M.H. Foschiatti, (Ed), Escenarios vulnerables del Nordeste Argentino. UNNE-CONICET, Resistencia, Chaco, 315-336.
Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., Area, M.C. (2013a). Optimization of the Pretreatment of Prosopis nigra Sawdust for the Production of Fermentable Sugars. BioResourse, 155, 66-79. https://doi.org/10.1016/j.cherd.2019.12.027
Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., Area, M.C. (2013b). Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Industrial Crops and Products, 42, 363-368. https://doi.org/10.1016/j.indcrop.2012.06.019
Dagnino, E.P., Chiappero, L.R., Nicolau, V.V., Chamorro, E.R. (2020). Separation process optimisation and characterisation of lignin from black carob tree sawdust into a biorefinery. Chemical Engineering Research and Design, 155, 66-79. https://doi.org/10.1016/j.cherd.2019.12.027
Dagnino, E.P., Ruiz, C., Chamorro, E. (2018). Ensayos preliminares de deslignificación de aserrín de algarrobo negro, en vistas a la producción eficiente de azúcares fermentables. Averma. 22, 06.61-06.66.
Esposito, D., Antonietti, M. (2015). Redefining biorefinery: the search for unconventional building blocks for materials. Chem. Soc. Rev. 44, 5821–5835. 10.1039/C4CS00368C
Guo, B., Zhang, Y., Ha, S.J., Jin, Y.S., Morgenroth, E. (2012). Combined biomimetic and inorganic acids hydrolysis of hemicellulose in Miscanthus for bioethanol production. Bioresource Technology, 110, 278-287. https://doi.org/10.1016/j.biortech.2012.01.133
Jang, S.K., Kim, J.H., Jeong, H., Choi, J.H., Lee, S.M., Choi, I.G. (2018) Investigation of conditions for dilute acid pretreatment for improving xylose solubilization and glucose production by supercritical water hydrolysis from Quercus mongolica. Renewable Energy, 117, 150-156. https://doi.org/10.1016/j.renene.2017.10.015
Jin, Q., Zhang, H., Yan, L., Qu, L., Huang, H. (2011). Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions. Biomass and Bioenergy. 35, 4158-4164. https://doi.org/10.1016/j.biombioe.2011.06.050
Kim, J.W., Kim, K.S., Lee, J.S., Park, S.M., Cho, H.Y., Park, J.C., Kim, J.S. (2011) Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresource Technology, 102, 8992–8999. 10.1016/j.biortech.2011.06.068
Liu, X., Lu, M., Ai, N., Yu, F., Ji, J. (2012) Kinetic model analysis of dilute sulfuric acid-catalyzed hemicellulose hydrolysis in sweet sorghum bagasse for xylose production. Industrial Crops and Products, 38, 81-86. https://doi.org/10.1016/j.indcrop.2012.01.013
Nitsos, C.K., Choli-Papadopoulou, T., Matis, K.A., Triantafyllidis, K.S. (2016). Optimization of hydrothermal pretreatment of hardwood and softwood lignocellulosic residues for selective hemicellulose recovery and improved cellulose enzymatic hydrolysis. ACS Sustainable Chemistry & Engineering, 6, 110-122. https://doi.org/10.1021/acssuschemeng.6b00535
Rafiqul, I.S.M., Sakinah, A.M. (2012) Kinetic studies on acid hydrolysis of Meranti wood sawdust for xylose production. Chemical Engineering Science, 71, 431–437. https://doi.org/10.1016/j.ces.2011.11.007
Vena, P.F., Brienzo, M., García-Aparicio, M., Görgens, J.F., Rypstra, T. (2015) Dilute sulphuric acid extraction of hemicelluloses from Eucalyptus grandis and its effect on Kraft and soda-aq pulp and handsheet properties. Cellulose Chemistry and Technology, 49, 819-832. https://www.cellulosechemtechnol.ro/pdf/CCT9-10(2015)/p.819-832.pdf
Villarreal, M.L.M., Prata, A.M.R., Felipe, M.G.A., Almeida, E., Silva, J.B. (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb. Technol. 40, 17-24. https://doi.org/10.1016/j.enzmictec.2005.10.032
Wang, X., Zhuang, J., Jiang, J., Fu, Y., Qin, M., Wang, Z. (2015) Separation and purification of hemicellulose-derived saccharides from wood hydrolysate by combined process. Bioresource Technology, 196, 426-430. https://doi.org/10.1016/j.biortech.2015.07.064
Winkelhausen, E., Kuzmanova, S. (1998) Microbial Conversion of D-xylose to xylitol. Journal of Fermentation and Bioengineering, 86, 1-14. https://doi.org/10.1016/S0922-338X(98)80026-3
Zhang, Y.H.P. (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Journal of Industrial Microbiology and Biotechnology, 35, 367–375. https://doi.org/10.1007/s10295-007-0293-6
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Eliana Paola Dagnino, Carlos Raúl Ruíz, Ester Ramona Chamorro, Alfredo Fabián Sequeira
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.