Moving Horizon Estimation for GNSS-IMU sensor fusion

Authors

  • Guido Sánchez Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, UNL-CONICET , Santa Fe-Argentina
  • Marina Murillo Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, UNL-CONICET , Santa Fe-Argentina
  • Lucas Genzelis Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, UNL-CONICET , Santa Fe-Argentina
  • Nahuel Deniz Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, UNL-CONICET , Santa Fe-Argentina
  • Leonardo Giovanini Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional, UNL-CONICET , Santa Fe-Argentina

DOI:

https://doi.org/10.33414/rtyc.37.112-122.2020

Keywords:

State Estimation, Sensor Fusion, Moving Horizon Estimation, GNSS, IMU

Abstract

The aim of this work is to develop a Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensor fusion system. To achieve this objective, we introduce a Moving Horizon Estimation (MHE) algorithm to estimate the position, velocity orientation and also the accelerometer and gyroscope bias of a simulated unmanned ground vehicle. The obtained results are compared with the true values of the system and with an Extended Kalman filter (EKF). The use of CasADi and Ipopt provide efficient numerical solvers that can obtain fast solutions. The quality of MHE estimated values enable us to consider MHE as a viable replacement for the popular Kalman Filter, even on real time systems.

Downloads

Download data is not yet available.

Downloads

Published

2020-10-22

How to Cite

Sánchez, G., Murillo, M., Genzelis, L., Deniz, N., & Giovanini, L. (2020). Moving Horizon Estimation for GNSS-IMU sensor fusion. Technology and Science Magazine, (37), 112–122. https://doi.org/10.33414/rtyc.37.112-122.2020

Most read articles by the same author(s)