Algoritmos para la Modelización y el Reconocimiento de Actividades de la Vida Diaria

Authors

  • Franco Lianza Universidad Tecnología Nacional - Facultad Regional Rosario - Argentina
  • D. Maria Universidad Tecnología Nacional - Facultad Regional Rosario - Argentina
  • Juan P. Nant Universidad Tecnología Nacional - Facultad Regional Rosario - Argentina
  • Nicole Schmidt Universidad Tecnología Nacional - Facultad Regional Rosario - Argentina

Keywords:

elderly people, activities of daily living, fuzzy logic, artificial neural networks

Abstract

The growth of the number of elderly people in the total composition of a population has proven to be in the last decades a process that occurs with a considerable speed. Activity monitoring technologies based on sensors networks
constitute a global solution to provide autonomy and quality of life for adults. The simulation allows to generate synthetic data sets corresponding to years of life of a person with minimum effort and time and thus to achieve the initial training of the algorithms of machine-learning present in the systems of monitoring. The addition of climatic influences to the simulation model through diffuse logic allows to contemplate the variations in the activities of a person. The recognition of daily activities with these influences can be realized through an artificial neural network maintaining a high level of precision.

Downloads

Download data is not yet available.

Published

2018-10-23

How to Cite

Lianza, F., Maria, D., Nant, J. P., & Schmidt, N. (2018). Algoritmos para la Modelización y el Reconocimiento de Actividades de la Vida Diaria. Technology and Science Magazine, (32), 17–27. Retrieved from https://rtyc.utn.edu.ar/index.php/rtyc/article/view/41