Biometrics system for gait analysis using inertial measurement units (IMU)

Authors

  • Nelson Dugarte Jerez Instituto Regional de Bioingeniería (IRB) y Grupo GENESIS – Centro Regional de Investigación y desarrollo en Computación y Neurociencia (CeReCoN), Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTN) – Argentina
  • Antonio Alvarez Abril Instituto Regional de Bioingeniería (IRB) y Grupo GENESIS – Centro Regional de Investigación y desarrollo en Computación y Neurociencia (CeReCoN), Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTN) – Argentina
  • Negman W. Alvarado Riviera Instituto Regional de Bioingeniería (IRB) – Centro Regional de Investigación y desarrollo en Computación y Neurociencia (CeReCoN), Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTN) – Argentina
  • Carlos Marcelo Gómez Grupo de Estudios Multidisciplinarios (GEMLaR), Facultad Regional la Rioja (FRR), Universidad Tecnológica Nacional (UTN) – Argentina
  • Ana Lattuca Instituto Regional de Bioingeniería (IRB) – Centro Regional de Investigación y desarrollo en Computación y Neurociencia (CeReCoN), Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTN) – Argentina
  • Guillermo Martín Sosa Barraco Instituto Regional de Bioingeniería (IRB) – Centro Regional de Investigación y desarrollo en Computación y Neurociencia (CeReCoN), Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTN) – Argentina
  • Edison del Carmen Dugarte Dugarte Instituto Regional de Bioingeniería (IRB) – Centro Regional de Investigación y desarrollo en Computación y Neurociencia (CeReCoN), Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTN) – Argentina
  • German Lombardo Instituto Regional de Bioingeniería (IRB) – Centro Regional de Investigación y desarrollo en Computación y Neurociencia (CeReCoN), Facultad Regional Mendoza (FRM), Universidad Tecnológica Nacional (UTN) – Argentina

DOI:

https://doi.org/10.33414/rtyc.49.47-67.2024

Keywords:

Gait biometrics, Multidimensional analysis, Inertial measurement units, Assessment of human joints

Abstract

The people movement depends of nervous system action on specific muscle groups that rest on the bone structure. Some pathological processes can cause alterations in the strength and coordination that must exist between the muscular responses, causing alterations in the expected movement. In their initial phase, most of these alterations go unnoticed until the physical damage significantly affects human activity, and in many cases irreparably. Currently, the most widely used method for the analysis of human movement is based on study of sequential photography in limited space, although digital positioning systems are also used to a lesser extent. This project deals with the technology development for biometric capture of human movement using inertial measurement sensors. The idea is to detail the spatial displacement of body specific sections to from the measurement of acceleration and angular movement, with the purpose of assessing the response of the joints involved. The objective is developed a system that allows to specialists medical identify abnormalities in the movement of patient under study. Preliminary results demonstrate the efficiency of implemented inertial sensor. Using 7 sensors strategically located on the patient's body and with an acquisition speed of 100 samples per second on each sensor, it's possible to detail walking movements less than 7.5 millimeters and accuracy in angular velocity up 0.1°/0.01 second. With the development of this instrument, the ability to visualize and analyze movements that are normally imperceptible to the human eye is achieved.

 

Downloads

Download data is not yet available.

References

hertz online. (2023). ABC del acelerómetro. Tutoriales 5hertz Electrónica. URL: https://www.5hertz.com/index.php?route=tutoriales/tutorial&tutorial_id=2

Albertí, E. (2006). Procesado digital de señales. Edición de la Universidad Politécnica de Catalunya, SL. Barcelona.

Alvarez, J.; Álvarez, D. López A. (2018). Accelerometry-Based Distance Estimation for Ambulatory Human Motion Analysis. MDPI Editorial Sensors, 18, 4441; https://doi.org/10.3390/s18124441.

Britannica. (2020). Hooke’s law. URL: https://www.britannica.com/science/Hookes-law. (Consultado en mayo 2020).

CeReCoN. (2020). Centro Regional de Investigación y Desarrollo en Computación y Neuroingeniería de la Universidad Tecnológica Nacional (UTN), Facultad Regional Mendoza (FRM). URL: http://www.cerecon.frm.utn.edu.ar/. (Consultado febrero, 2021).

Cruz, J.; Cruz, B.; Alfonso, R.; Adsuar, J. (2010). Revisión actual sobre metodología empleada en la valoración de la marcha humana normal y patológica. Revista Digital EFdeportes, Buenos Aires, Año 15, Nº 146. URL: https://www.efdeportes.com/efd146/valoracion-de-la-marcha-humana-normal-y-patologica.htm.

Dugarte, N., Medina, R., Rojas, R. (2015). Open Source Cardiology Electronic Health Record Development for DIGICARDIAC Implementation. 11th International Symposium on Medical Information Processing and Analysis (SIPAIM 2015), Editor: International Society for Optics and Photonics. Vol. 9681, pp: 96810Y-96810Y-11.

Ganong, W. (2020). Fisiología médica, Manual Moderno. 26ª Ed. Editorial McGraw-Hill. Madrid.

García, G., Elvar, H., Arenas, A., Pérez, C., Aguilera, J. (2017). Dispositivos y Técnicas Para la Medición del Rendimiento del Salto Vertical. Journal of Physical Exercise and Health Science for Trainers. URL: https://g-se.com/dispositivos-y-tecnicas-para-la-medicion-del-rendimiento-del-salto-vertical-que-opciones-tenemos-2280-sa-259430c9460ba4.

Guillamón, A. (2014). Biomecánica del movimiento humano: evolución histórica y aparatos de medida. Revista Digital EFDeportes.com, 18 (188). URL: https://www.efdeportes.com/efd188/biomecanica-del-movimiento-humano.htm. (Consultado junio, 2020).

Haro, M. (2014). Laboratorio de análisis de marcha y movimiento. Rev. Med. Clin. Condes, Vol. 25(2): 237-247.

Krzeszowski, T.; Switonski, A.; Kepski, M.; Calafate, C. (2022). Intelligent Sensors for Human Motion Analysis. MDPI Editorial Sensors, 22, 4952. https://doi.org/10.3390/s22134952

Laskakit. (2020). Xm 15B Bluetooth serial module specification. URL: https://www.laskakit.cz/user/related_files/xm-15b.pdf. (Consultado en abril, 2021).

Lefeber, N., Degelaen, M., Truyers, C., Safin, I., and Beckwée, D. (2019). Validity and Reproducibility of Inertial Physilog Sensors for Spatiotemporal Gait Analysis in Patients With Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 9, pp. 1865-1874. https://doi.org/10.1109/TNSRE.2019.2930751.

Lizárraga Chávez, G. (1999). Cuerpo y movimiento: dimensión psicológica. Revista de Psicología Año 3, no. 5, pp. 129-163.

Marin, F. (2020). Human and Animal Motion Tracking Using Inertial Sensors. MDPI Editorial Sensors, 20, 6074; https://doi.org/10.3390/s20216074.

Mittag, C.; Waldheim, V.; Krause, A.; Seel, T. (2022). Using a single inertial sensor to control exergames for children with cerebral palsy. Current Directions in Biomedical Engineering, vol. 8, no. 2, pp. 431-434. https://doi.org/10.1515/cdbme-2022-1110.

Moebs W., Ling S., Sanny J. (2021). Física universitaria, volumen 1. Editorial OpenStax, URL: https://openstax.org/books/f%C3%ADsica-universitaria-volumen-1/pages/3-6-calcular-la-velocidad-y-el-desplazamiento-a-partir-de-la-aceleracion. (Consultado mayo, 2022).

Morris A. (2001). Measurement and Instrumentation Principles. Butterworth-Heinemann Publishing Ltd., third edition, Great Britain.

Nee, C.; Ong, S.; Fong, W. (2008). Methods for in-field user calibration of an inertial measurement unit without external equipment. Measurement Science and Technology, Vol. 19, no 8.

Patel, G.; Mullerpatan, R.; Agarwal, B.; Shetty, T.; Ojha, R.; Shaikh-Mohammed, J.; Sujatha, S. (2022). Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. The Journal of Engineering in Medicine, online journal vol. 236 (5).

Pérez, A. (2015). Análisis de movimiento humano: aplicaciones en rehabilitación física. Seminario del Instituto de Ciencias Físicas ICF, Universidad Nacional Autónoma de México. México DF.

Pérez, P. (2015). Un método de calibración de sensores inerciales. Tesis de grado para Máster en Matemáticas, departamento de publicación de la Universidad de Almería, España. URL: https://repositorio.ual.es/bitstream/handle/10835/6262/7327_Trabajo_Paula_Perez.pdf?sequence=1

Raspberry Pi. (2022). Raspberry Pi 3 Model A+. URL: https://www.raspberrypi.com/ products/raspberry-pi-3-model-a-plus/. (Consultado junio, 2022).

SBG Sistems. (2020). ¿Qué es la tecnología MEMS?. URL: https://www.sbg-systems.com/es/soporte/tecnologia/tecnologia-mems-imu-ahrs-ins/. (Consultado enero de 2023).

Uehara, M.; Glez del Tánago, G.; Neag, C.; Del Olmo, P.; Carlavilla, F. (2015). Trastornos del movimiento. Fundación Dialnet, Panorama actual del medicamento, vol. 39 (381): 172-185.

Valladolid, O., Madera, F., Aguayo, A. (2019). Análisis Gráfico del Movimiento Humano para Detectar Alteraciones Biomecánicas. Revista de Ingeniería de la Universidad Autónoma de Yucatán. Mexico DF, 23 (2): 52-67.

Weygers, I.; Kok, M.; De Vroey, H.; Verbeerst, T.; Versteyhe, M.; Hallez, H.; Claeys, K. (2020). Drift-Free Inertial Sensor-Based Joint Kinematics for Long-Term Arbitrary Movements. IEEE Sensors Journal, vol. 20 (14): 7969-7979. Doi: 10.1109/JSEN.2020.2982459.

WitMotion Shenzhen Co. (2022). Bluetooth AHRS IMU sensor BWT901CL. Datasheet v20-0707. URL: www.wit-motion.com. (Consultado mayo 2022).

Published

2024-04-24

How to Cite

Dugarte Jerez, N., Alvarez Abril, A., Alvarado Riviera, N. W., Gómez, C. M., Lattuca, A., Sosa Barraco, G. M., Dugarte Dugarte, E. del C., & Lombardo, G. (2024). Biometrics system for gait analysis using inertial measurement units (IMU). Technology and Science Magazine, (49), 47–67. https://doi.org/10.33414/rtyc.49.47-67.2024

Most read articles by the same author(s)