Variaciones en método de síntesis de UiO-66-NH2 para esterificación catalítica del ácido levulínico

Autores/as

  • Daiana Antonella Bravo Fuchineco Universidad Tecnológica Nacional - Facultad Regional Córdoba - Argentina
  • Angélica Constanza Heredia Centro de Investigación y Tecnología Química (CITeQ) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) / Universidad Tecnológica Nacional- Facultad Regional Córdoba (UTN-FRC) - Argentina.
  • Enrique Rodríguez Castellón Departamento de Química Inorgánica, Cristalografía y Mineralogía / Universidad de Málaga (UMA), Málaga - España.
  • Mónica Elsie Crivello Centro de Investigación y Tecnología Química (CITeQ) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) / Universidad Tecnológica Nacional- Facultad Regional Córdoba (UTN-FRC) - Argentina.

DOI:

https://doi.org/10.33414/rtyc.42.27-40.2021

Palabras clave:

MOFs, UiO-66-NH2, solvotermal, biomasa, esterificación del ácido levulínico.

Resumen

La creciente tendencia al reemplazo parcial de los combustibles derivados del petróleo por aquellos provenientes de la revalorización de biomasa ha tomado gran importancia en el último tiempo. Es por ello que el presente trabajo propone la obtención de ésteres levulínicos mediante una reacción catalítica de esterificación del ácido levulínico, molécula plataforma, con diferentes alcoholes. Para ello se han sintetizado nanocatalizadores  MOFs, que fueron utilizados como catalizadores (UiO-66-NH2), constituidos por circonio como fuente metálica y ácido aminotereftálico como agente ligante orgánico. Se presenta una alternativa de síntesis mediante agitación por vía ultrasónica a temperatura de 60 ºC y una variación en el tiempo de mufla. La finalidad fue lograr una síntesis en condiciones más favorables y mejorar las propiedades estructurales de los catalizadores. Las mismas fueron analizadas por difracción de rayos X, espectroscopía infrarroja,  microscopía electrónica de barrido, espectroscopia de emisión atómica de plasma de microondas,  isotermas de adsorción de N2 y espectrometría de fotoelectrones inducidos por rayos X. El progreso de la reacción catalítica fue seguido por cromatografía gaseosa y espectroscopía de masa. Se optimizaron parámetros como temperatura, masa de catalizador y relación molar de reactivos, buscando mejorar el rendimiento catalítico. Para todos los esteres levulínicos, el MOF que presentó la mayor actividad y selectividad al producto deseado fue el obtenido con un tiempo de síntesis de 6hs, con un rendimiento de 77,54 % a levulinato de metilo, de 34,58 % a levulinato de etilo y de 31,41 % a levulinato de butilo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abid, H. R., Shang, J., Ang, H. M., & Wang, S. (2013). Amino-functionalized Zr-MOF nanoparticles for adsorption of CO 2 and CH 4. International Journal of Smart and Nano Materials, 4(1), 72–82. https://doi.org/10.1080/19475411.2012.688773

Arrozi, U. S. F., Wijaya, H. W., Patah, A., & Permana, Y. (2015). Efficient acetalization of benzaldehydes using UiO-66 and UiO-67: Substrates accessibility or Lewis acidity of zirconium. Applied Catalysis A: General, 506, 77–84. https://doi.org/10.1016/j.apcata.2015.08.028

Badgujar, K. C., Badgujar, V. C., & Bhanage, B. M. (2020). A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Processing Technology, 197(May 2019), 106213. https://doi.org/10.1016/j.fuproc.2019.106213

Biswas, S., & Van Der Voort, P. (2013). A general strategy for the synthesis of functionalised UiO-66 frameworks: Characterisation, stability and CO2 adsorption properties. European Journal of Inorganic Chemistry, 12, 2154–2160. https://doi.org/10.1002/ejic.201201228

Briggs, D. (2005). X-ray photoelectron spectroscopy (XPS). Handbook of Adhesion: Second Edition, 621–622. https://doi.org/10.1002/0470014229.ch22

Cirujano, F. G., Corma, A., & Llabrés I Xamena, F. X. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 257(Part 2), 213–220. https://doi.org/10.1016/j.cattod.2014.08.015

Corma, A., García, H., & Llabrés I Xamena, F. X. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews, 110(8), 4606–4655. https://doi.org/10.1021/cr9003924

Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284–1293. https://doi.org/10.1039/b804680h

Di, X., Zhang, Y., Fu, J., Yu, Q., Wang, Z., & Yuan, Z. (2019). Biocatalytic upgrading of levulinic acid to methyl levulinate in green solvents. Process Biochemistry, 81(January), 33–38. https://doi.org/10.1016/j.procbio.2019.03.024

Gomes, I. S., de Carvalho, D. C., Oliveira, A. C., Rodríguez-Castellón, E., Tehuacanero-Cuapa, S., Freire, P. T. C., Filho, J. M., Saraiva, G. D., de Sousa, F. F., & Lang, R. (2018). On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone. Chemical Engineering Journal, 334, 1927–1942. https://doi.org/10.1016/j.cej.2017.11.112

Guo, T., Qiu, M., & Qi, X. (2019). Selective conversion of biomass-derived levulinic acid to ethyl levulinate catalyzed by metal organic framework (MOF)-supported polyoxometalates. Applied Catalysis A: General, 572(September 2018), 168–175. https://doi.org/10.1016/j.apcata.2019.01.004

Huang, A., Wan, L., & Caro, J. (2018). Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. Materials Research Bulletin, 98(October 2017), 308–313. https://doi.org/10.1016/j.materresbull.2017.10.038

Jrad, A., Abu Tarboush, B. J., Hmadeh, M., & Ahmad, M. (2019). Tuning acidity in zirconium-based metal organic frameworks catalysts for enhanced production of butyl butyrate. Applied Catalysis A: General, 570, 31–41. https://doi.org/10.1016/j.apcata.2018.11.003

Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E. A., Bonino, F., & Lillerud, K. P. (2010). Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632–6640. https://doi.org/10.1021/cm102601v

Kandiah, M., Usseglio, S., Svelle, S., Olsbye, U., Lillerud, K. P., & Tilset, M. (2010). Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry, 20(44), 9848–9851. https://doi.org/10.1039/c0jm02416c

Li, J. R., Sculley, J., & Zhou, H. C. (2012). Metal-organic frameworks for separations. Chemical Reviews, 112(2), 869–932. https://doi.org/10.1021/cr200190s

Liang, X., Fu, Y., & Chang, J. (2020). Sustainable production of methyl levulinate from biomass in ionic liquid-methanol system with biomass-based catalyst. Fuel, 259(July 2019), 116246. https://doi.org/10.1016/j.fuel.2019.116246

Lin, K. Y. A., Liu, Y. T., & Chen, S. Y. (2016). Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. Journal of Colloid and Interface Science, 461, 79–87. https://doi.org/10.1016/j.jcis.2015.08.061

Liu, G., Shen, J., Huang, K., Jin, W., Li, Y., Guan, K., & Li, Q. (2016). UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2016.04.045

Lozano, L. A., Iglesias, C. M., Faroldi, B. M. C., Ulla, M. A., & Zamaro, J. M. (2018). Efficient solvothermal synthesis of highly porous UiO-66 nanocrystals in dimethylformamide-free media. Journal of Materials Science. https://doi.org/10.1007/s10853-017-1658-5

Luan, Y., Qi, Y., Gao, H., Zheng, N., & Wang, G. (2014). Synthesis of an amino-functionalized metal-organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. Journal of Materials Chemistry A, 2(48), 20588–20596. https://doi.org/10.1039/c4ta04311a

Luu, C. L., Van Nguyen, T. T., Nguyen, T., & Hoang, T. C. (2015). Synthesis, characterization and adsorption ability of UiO-66-NH2. Advances in Natural Sciences: Nanoscience and Nanotechnology. https://doi.org/10.1088/2043-6262/6/2/025004

Nandiwale, K. Y., Sonar, S. K., Niphadkar, P. S., Joshi, P. N., Deshpande, S. S., Patil, V. S., & Bokade, V. V. (2013). Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General, 460–461, 90–98. https://doi.org/10.1016/j.apcata.2013.04.024

Ploskonka, A. M., Marzen, S. E., & DeCoste, J. B. (2017). Facile Synthesis and Direct Activation of Zirconium Based Metal-Organic Frameworks from Acetone. Industrial and Engineering Chemistry Research, 56(6), 1478–1484. https://doi.org/10.1021/acs.iecr.6b04361

Quereshi, S., Ahmad, E., Pant, K. K., & Dutta, S. (2019). Synthesis and Characterization of Zirconia Supported Silicotungstic Acid for Ethyl Levulinate Production. Industrial and Engineering Chemistry Research, 58(35), 16045–16054. https://doi.org/10.1021/acs.iecr.9b01659

Ramli, N. A. S., Zaharudin, N. H., & Amin, N. A. S. (2017). Esterification of renewable levulinic acid to levulinate esters using amberlyst-15 as a solid acid catalyst. Jurnal Teknologi, 79(1), 137–142. https://doi.org/10.11113/jt.v79.8095

Strauss, I., Chakarova, K., Mundstock, A., Mihaylov, M., Hadjiivanov, K., Guschanski, N., & Caro, J. (2020). UiO-66 and UiO-66-NH2 based sensors: Dielectric and FTIR investigations on the effect of CO2 adsorption. Microporous and Mesoporous Materials, 302(April), 110227. https://doi.org/10.1016/j.micromeso.2020.110227

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Travlou, N. A., Algarra, M., Alcoholado, C., Cifuentes-Rueda, M., Labella, A. M., Lazaro-Martínez, J. M., Rodríguez-Castellon, E., & Bandosz, T. J. (2018). Carbon quantum dot surface-chemistry-dependent ag release governs the high antibacterial activity of Ag-metal-organic framework composites. ACS Applied Bio Materials, 1(3), 693–707. https://doi.org/10.1021/acsabm.8b00166

Yu, Z., Lu, X., Xiong, J., & Ji, N. (2019). Transformation of Levulinic Acid to Valeric Biofuels: A Review on Heterogeneous Bifunctional Catalytic Systems. ChemSusChem, 12(17), 3915–3930. https://doi.org/10.1002/cssc.201901522

Zubir, M. I., & Chin, S. Y. (2010). Kinetics of modified Zirconia-catalyzed heterogeneous esterification reaction for biodiesel production. In Journal of Applied Sciences (Vol. 10, Issue 21, pp. 2584–2589). https://doi.org/10.3923/jas.2010.2584.2589

Descargas

Publicado

03-09-2021

Cómo citar

Bravo Fuchineco, D. A., Heredia, A. C., Rodríguez Castellón, E., & Crivello, M. E. (2021). Variaciones en método de síntesis de UiO-66-NH2 para esterificación catalítica del ácido levulínico. Revista Tecnología Y Ciencia, (42), 27–40. https://doi.org/10.33414/rtyc.42.27-40.2021