Variations in the synthesis method of UiO-66-NH2 for catalytic esterification of levulinic acid.

Authors

  • Daiana Antonella Bravo Fuchineco Universidad Tecnológica Nacional - Facultad Regional Córdoba - Argentina
  • Angélica Constanza Heredia Centro de Investigación y Tecnología Química (CITeQ) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) / Universidad Tecnológica Nacional- Facultad Regional Córdoba (UTN-FRC) - Argentina.
  • Enrique Rodríguez Castellón Departamento de Química Inorgánica, Cristalografía y Mineralogía / Universidad de Málaga (UMA), Málaga - España.
  • Mónica Elsie Crivello Centro de Investigación y Tecnología Química (CITeQ) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) / Universidad Tecnológica Nacional- Facultad Regional Córdoba (UTN-FRC) - Argentina.

DOI:

https://doi.org/10.33414/rtyc.42.27-40.2021

Keywords:

Metal-organic network, UIO-66-NH2, solvotermal, biomass, levulinic acid esterification

Abstract

The growing trend towards partial replacement of petroleum-derived fuels by those from biomass revaluation has taken on great importance in recent times. That is why the present work proposes obtaining levulinic esters by means of a catalytic reaction of esterification of levulinic acid, platform molecule, with different alcohols. For this, MOF nanocatalysts have been synthesized, which were used as catalysts (UiO-66-NH2), consisting of zirconium as a metal source and aminoterephthalic acid as an organic binding agent. An alternative synthesis is presented by means of ultrasonic stirring at a temperature of 60 ºC and a variation in the muffle time. The purpose was to achieve a synthesis under more favorable conditions and to improve the structural properties of the catalysts. They were analyzed by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, microwave plasma atomic emission spectroscopy, N2 adsorption isotherms and X-ray-induced photoelectron spectrometry. The progress of the catalytic reaction was followed by gas chromatography and mass spectroscopy. Parameters such as temperature, catalyst mass and molar ratio of reactants were optimized, seeking to improve catalytic performance. For all levulinic esters, the MOF that presented the highest activity and selectivity to the desired product was that obtained with a synthesis time of 6 hours, with a yield of 77.54% to methyl levulinate, and 34.58% to levulinate of ethyl and 31.41% to butyl levulinate.

Downloads

Download data is not yet available.

References

Abid, H. R., Shang, J., Ang, H. M., & Wang, S. (2013). Amino-functionalized Zr-MOF nanoparticles for adsorption of CO 2 and CH 4. International Journal of Smart and Nano Materials, 4(1), 72–82. https://doi.org/10.1080/19475411.2012.688773

Arrozi, U. S. F., Wijaya, H. W., Patah, A., & Permana, Y. (2015). Efficient acetalization of benzaldehydes using UiO-66 and UiO-67: Substrates accessibility or Lewis acidity of zirconium. Applied Catalysis A: General, 506, 77–84. https://doi.org/10.1016/j.apcata.2015.08.028

Badgujar, K. C., Badgujar, V. C., & Bhanage, B. M. (2020). A review on catalytic synthesis of energy rich fuel additive levulinate compounds from biomass derived levulinic acid. Fuel Processing Technology, 197(May 2019), 106213. https://doi.org/10.1016/j.fuproc.2019.106213

Biswas, S., & Van Der Voort, P. (2013). A general strategy for the synthesis of functionalised UiO-66 frameworks: Characterisation, stability and CO2 adsorption properties. European Journal of Inorganic Chemistry, 12, 2154–2160. https://doi.org/10.1002/ejic.201201228

Briggs, D. (2005). X-ray photoelectron spectroscopy (XPS). Handbook of Adhesion: Second Edition, 621–622. https://doi.org/10.1002/0470014229.ch22

Cirujano, F. G., Corma, A., & Llabrés I Xamena, F. X. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 257(Part 2), 213–220. https://doi.org/10.1016/j.cattod.2014.08.015

Corma, A., García, H., & Llabrés I Xamena, F. X. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews, 110(8), 4606–4655. https://doi.org/10.1021/cr9003924

Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284–1293. https://doi.org/10.1039/b804680h

Di, X., Zhang, Y., Fu, J., Yu, Q., Wang, Z., & Yuan, Z. (2019). Biocatalytic upgrading of levulinic acid to methyl levulinate in green solvents. Process Biochemistry, 81(January), 33–38. https://doi.org/10.1016/j.procbio.2019.03.024

Gomes, I. S., de Carvalho, D. C., Oliveira, A. C., Rodríguez-Castellón, E., Tehuacanero-Cuapa, S., Freire, P. T. C., Filho, J. M., Saraiva, G. D., de Sousa, F. F., & Lang, R. (2018). On the reasons for deactivation of titanate nanotubes with metals catalysts in the acetalization of glycerol with acetone. Chemical Engineering Journal, 334, 1927–1942. https://doi.org/10.1016/j.cej.2017.11.112

Guo, T., Qiu, M., & Qi, X. (2019). Selective conversion of biomass-derived levulinic acid to ethyl levulinate catalyzed by metal organic framework (MOF)-supported polyoxometalates. Applied Catalysis A: General, 572(September 2018), 168–175. https://doi.org/10.1016/j.apcata.2019.01.004

Huang, A., Wan, L., & Caro, J. (2018). Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. Materials Research Bulletin, 98(October 2017), 308–313. https://doi.org/10.1016/j.materresbull.2017.10.038

Jrad, A., Abu Tarboush, B. J., Hmadeh, M., & Ahmad, M. (2019). Tuning acidity in zirconium-based metal organic frameworks catalysts for enhanced production of butyl butyrate. Applied Catalysis A: General, 570, 31–41. https://doi.org/10.1016/j.apcata.2018.11.003

Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E. A., Bonino, F., & Lillerud, K. P. (2010). Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632–6640. https://doi.org/10.1021/cm102601v

Kandiah, M., Usseglio, S., Svelle, S., Olsbye, U., Lillerud, K. P., & Tilset, M. (2010). Post-synthetic modification of the metal-organic framework compound UiO-66. Journal of Materials Chemistry, 20(44), 9848–9851. https://doi.org/10.1039/c0jm02416c

Li, J. R., Sculley, J., & Zhou, H. C. (2012). Metal-organic frameworks for separations. Chemical Reviews, 112(2), 869–932. https://doi.org/10.1021/cr200190s

Liang, X., Fu, Y., & Chang, J. (2020). Sustainable production of methyl levulinate from biomass in ionic liquid-methanol system with biomass-based catalyst. Fuel, 259(July 2019), 116246. https://doi.org/10.1016/j.fuel.2019.116246

Lin, K. Y. A., Liu, Y. T., & Chen, S. Y. (2016). Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. Journal of Colloid and Interface Science, 461, 79–87. https://doi.org/10.1016/j.jcis.2015.08.061

Liu, G., Shen, J., Huang, K., Jin, W., Li, Y., Guan, K., & Li, Q. (2016). UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science. https://doi.org/10.1016/j.memsci.2016.04.045

Lozano, L. A., Iglesias, C. M., Faroldi, B. M. C., Ulla, M. A., & Zamaro, J. M. (2018). Efficient solvothermal synthesis of highly porous UiO-66 nanocrystals in dimethylformamide-free media. Journal of Materials Science. https://doi.org/10.1007/s10853-017-1658-5

Luan, Y., Qi, Y., Gao, H., Zheng, N., & Wang, G. (2014). Synthesis of an amino-functionalized metal-organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. Journal of Materials Chemistry A, 2(48), 20588–20596. https://doi.org/10.1039/c4ta04311a

Luu, C. L., Van Nguyen, T. T., Nguyen, T., & Hoang, T. C. (2015). Synthesis, characterization and adsorption ability of UiO-66-NH2. Advances in Natural Sciences: Nanoscience and Nanotechnology. https://doi.org/10.1088/2043-6262/6/2/025004

Nandiwale, K. Y., Sonar, S. K., Niphadkar, P. S., Joshi, P. N., Deshpande, S. S., Patil, V. S., & Bokade, V. V. (2013). Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Applied Catalysis A: General, 460–461, 90–98. https://doi.org/10.1016/j.apcata.2013.04.024

Ploskonka, A. M., Marzen, S. E., & DeCoste, J. B. (2017). Facile Synthesis and Direct Activation of Zirconium Based Metal-Organic Frameworks from Acetone. Industrial and Engineering Chemistry Research, 56(6), 1478–1484. https://doi.org/10.1021/acs.iecr.6b04361

Quereshi, S., Ahmad, E., Pant, K. K., & Dutta, S. (2019). Synthesis and Characterization of Zirconia Supported Silicotungstic Acid for Ethyl Levulinate Production. Industrial and Engineering Chemistry Research, 58(35), 16045–16054. https://doi.org/10.1021/acs.iecr.9b01659

Ramli, N. A. S., Zaharudin, N. H., & Amin, N. A. S. (2017). Esterification of renewable levulinic acid to levulinate esters using amberlyst-15 as a solid acid catalyst. Jurnal Teknologi, 79(1), 137–142. https://doi.org/10.11113/jt.v79.8095

Strauss, I., Chakarova, K., Mundstock, A., Mihaylov, M., Hadjiivanov, K., Guschanski, N., & Caro, J. (2020). UiO-66 and UiO-66-NH2 based sensors: Dielectric and FTIR investigations on the effect of CO2 adsorption. Microporous and Mesoporous Materials, 302(April), 110227. https://doi.org/10.1016/j.micromeso.2020.110227

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

Travlou, N. A., Algarra, M., Alcoholado, C., Cifuentes-Rueda, M., Labella, A. M., Lazaro-Martínez, J. M., Rodríguez-Castellon, E., & Bandosz, T. J. (2018). Carbon quantum dot surface-chemistry-dependent ag release governs the high antibacterial activity of Ag-metal-organic framework composites. ACS Applied Bio Materials, 1(3), 693–707. https://doi.org/10.1021/acsabm.8b00166

Yu, Z., Lu, X., Xiong, J., & Ji, N. (2019). Transformation of Levulinic Acid to Valeric Biofuels: A Review on Heterogeneous Bifunctional Catalytic Systems. ChemSusChem, 12(17), 3915–3930. https://doi.org/10.1002/cssc.201901522

Zubir, M. I., & Chin, S. Y. (2010). Kinetics of modified Zirconia-catalyzed heterogeneous esterification reaction for biodiesel production. In Journal of Applied Sciences (Vol. 10, Issue 21, pp. 2584–2589). https://doi.org/10.3923/jas.2010.2584.2589

Published

2021-09-03

How to Cite

Bravo Fuchineco, D. A., Heredia, A. C., Rodríguez Castellón, E., & Crivello, M. E. (2021). Variations in the synthesis method of UiO-66-NH2 for catalytic esterification of levulinic acid. Technology and Science Magazine, (42), 27–40. https://doi.org/10.33414/rtyc.42.27-40.2021