Estudo DFT+U das propriedades estruturais e eletrônicas de La₀.₁₂Sr₀.₈₈TiO₃: implicações para células de combustível de óxido sólido
DOI:
https://doi.org/10.33414/rtyc.53.95-108.2025Palavras-chave:
SOFC, ânodo, DFT, Bader, vagasResumo
Este trabalho apresenta um estudo comparativo das propriedades estruturais e da estrutura eletrônica da perovskita SrTiO3 (STO) e sua variante dopada com lantânio, La0,12Sr0,88TiO3 (LST-12), utilizando cálculos de primeiros princípios baseados na teoria do funcional da densidade (DFT). No composto LST-12, uma análise detalhada da estrutura eletrônica foi realizada utilizando uma configuração spin-polarizada. Além disso, a distribuição de carga associada a cada íon foi examinada utilizando a análise de carga de Bader. Finalmente, uma vacância de oxigênio foi introduzida em uma supercélula 4×2×2 La0.125Sr0.875TiO3-δ para avaliar seu impacto nas propriedades do material.
Downloads
Referências
Adewale, A. A., Chik, A., & Zaki, R. M. (2020). Structural, electronic and thermoelectric properties of SrTiO3 ceramic doped by lanthanum using first principles. IOP Conference Series: Materials Science and Engineering, 957(1), 0–10. https://doi.org/10.1088/1757-899X/957/1/012008
Birch, F. (1947). Finite elastic strain of cubic crystals. Physical Review, 71(11), 809–824. https://doi.org/10.1103/PhysRev.71.809
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953
Brown, J. J., Ke, Z., Geng, W., & Page, A. J. (2018). Oxygen Vacancy Defect Migration in Titanate Perovskite Surfaces: Effect of the A-Site Cations. Journal of Physical Chemistry C, 122(26), 14590–14597. https://doi.org/10.1021/acs.jpcc.8b03322
Burnat, D., Heel, A., Holzer, L., Kata, D., Lis, J., & Graule, T. (2012). Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis. Journal of Power Sources, 201, 26–36. https://doi.org/10.1016/j.jpowsour.2011.10.088
Burnat, D., Heel, A., Holzer, L., Otal, E., Kata, D., & Graule, T. (2012). On the chemical interaction of nanoscale lanthanum doped strontium titanates with common scandium and yttrium stabilized electrolyte materials. International Journal of Hydrogen Energy, 37(23), 18326–18341. https://doi.org/10.1016/j.ijhydene.2012.09.022
Carballo-Córdova, D. A., Ochoa-Lara, M. T., Olive-Méndez, S. F., & Espinosa-Magaña, F. (2019). First-principles calculations and Bader analysis of oxygen-deficient induced magnetism in cubic BaTiO3−x and SrTiO3−x. Philosophical Magazine, 99(2), 181–197. https://doi.org/10.1080/14786435.2018.1535722
Cheng, J., Gong, J., Yue, S., Jiang, Y., Hou, X., Ma, J., Yao, Y., & Jiang, C. (2021). Electrochemical investigation of La0.4Sr0.6TiO3 synthesized in air for SOFC application. Journal of Applied Electrochemistry, 51(8), 1175–1188. https://doi.org/10.1007/s10800-021-01568-8
Choi, M., Posadas, A. B., Rodriguez, C. A., O’Hara, A., Seinige, H., Kellock, A. J., Frank, M. M., Tsoi, M., Zollner, S., Narayanan, V., & Demkov, A. A. (2014). Structural, optical, and electrical properties of strained La-doped SrTiO3 films. Journal of Applied Physics, 116(4). https://doi.org/10.1063/1.4891225
Deshmukh V., Nagaswarupa H., Ravikumar C., Anil Kumar M., Shashi Shekhar T., A. M. H. (2020). Lanthanum doped strontium titanate nanomaterial for photocatalytic and supercapacitor applications. Asian Journal of Chemistry, 32(8), 2013–2020.
Duan, Y., Ohodnicki, P., Chorpening, B., & Hackett, G. (2017). Electronic structural, optical and phonon lattice dynamical properties of pure- and La-doped SrTiO3: An ab initio thermodynamics study. Journal of Solid State Chemistry, 256(August), 239–251. https://doi.org/10.1016/j.jssc.2017.09.016
Fagg, D. P., Kharton, V. V., Kovalevsky, A. V., Viskup, A. P., Naumovich, E. N., & Frade, J. R. (2001). The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. Journal of the European Ceramic Society, 21(10–11), 1831–1835. https://doi.org/10.1016/S0955-2219(01)00125-X
Fan, W., Song, Y., Bi, J., Pei, Y., Zhang, R., & Cao, Y. (2019). Evolution of element-specific electronic structures in alkaline titanates. AIP Advances, 9(6), 1–6. https://doi.org/10.1063/1.5109588
Ha, M.-A., & Alexandrova, A. N. (2016). Oxygen Vacancies of Anatase(101): Extreme Sensitivity to the Density Functional Theory Method. Journal of Chemical Theory and Computation, 12(6), 2889–2895. https://doi.org/10.1021/acs.jctc.6b00095
Hashimoto, S., Kindermann, L., Poulsen, F. W., & Mogensen, M. (2005). A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air. Journal of Alloys and Compounds, 397(1–2), 245–249. https://doi.org/10.1016/j.jallcom.2004.11.066
Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354–360. https://doi.org/10.1016/j.commatsci.2005.04.010
Howard, S. A., Yau, J. K., & Anderson, H. U. (1989). Structural characteristics of Sr1-xLaxTi 3+δ as a function of oxygen partial pressure at 1400°C. Journal of Applied Physics, 65(4), 1492–1498. https://doi.org/10.1063/1.342963
Johnston, K., Castell, M. R., Paxton, A. T., & Finnis, M. W. (2004). SrTiO3(001)(2×1) reconstructions: First-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images. Physical Review B - Condensed Matter and Materials Physics, 70(8), 1–12. https://doi.org/10.1103/PhysRevB.70.085415
Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558–561. https://doi.org/10.1103/PhysRevB.47.558
Le, M., Vo, N., Le, Q., Tran, V. A., & Phan, T. Q. (2021). Sr 1 − x La x TiO 3 Nanocubes toward the Photodegradation of 2-Naphthol under Artificial Solar Light.
Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
Piskunov, S., Heifets, E., Eglitis, R. I., & Borstel, G. (2004). Bulk properties and electronic structure of SrTiO3, BaTiO 3, PbTiO3 perovskites: An ab initio HF/DFT study. Computational Materials Science, 29(2), 165–178. https://doi.org/10.1016/j.commatsci.2003.08.036
Piskunov, S., Kotomin, E. A., Heifets, E., Maier, J., Eglitis, R. I., & Borstel, G. (2005). Hybrid DFT calculations of the atomic and electronic structure for ABO 3 perovskite (0 0 1) surfaces. Surface Science, 575(1–2), 75–88. https://doi.org/10.1016/j.susc.2004.11.008
Presto, S., Barbucci, A., Carpanese, M., Han, F., Costa, R., & Viviani, M. (2018). Application of La-Doped SrTiO3 in Advanced Metal-Supported Solid Oxide Fuel Cells. Crystals, 8(3), 134. https://doi.org/10.3390/cryst8030134
Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid‐based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28(5), 899–908. https://doi.org/10.1002/jcc.20575
Savaniu, C. D., & Irvine, J. T. S. (2011). La-doped SrTiO3 as anode material for IT-SOFC. Solid State Ionics, 192(1), 491–493. https://doi.org/10.1016/j.ssi.2010.02.010
Sharma, U., Pawar, V., & Singh, P. (2024). Charge particle dynamics and electrochemical behaviour of SrTiO3-δ as anode material for IT-SOFC applications. International Journal of Hydrogen Energy, 52, 1278–1289. https://doi.org/10.1016/j.ijhydene.2023.11.007
Shein, I. R., Shein, K. I., Kozhevnikov, V. L., & Ivanovskiǐ, A. L. (2005). Band structure and the magnetic and elastic properties of SrFeO3 and LaFeO3 perovskites. Physics of the Solid State, 47(11), 2082–2088. https://doi.org/10.1134/1.2131149
Souto-Casares, J., Spaldin, N. A., & Ederer, C. (2021). Oxygen vacancies in strontium titanate: A DF +DMFT study. Physical Review Research, 3(2), 023027. https://doi.org/10.1103/PhysRevResearch.3.023027
Su, H. Y., & Sun, K. (2015). DFT study of the stability of oxygen vacancy in cubic ABO3 perovskites. Journal of Materials Science, 50(4), 1701–1709. https://doi.org/10.1007/s10853-014-8731-0
Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21(8), 084204. https://doi.org/10.1088/0953-8984/21/8/084204
Van Benthem, K., Elsässer, C., & French, R. H. (2001). Bulk electronic structure of SrTiO3: Experiment and theory. Journal of Applied Physics, 90(12), 6156–6164. https://doi.org/10.1063/1.1415766
Winczewski, S., Dziedzic, J., Miruszewski, T., Rybicki, J., & Gazda, M. (2022). Properties of Oxygen Vacancy and Hydrogen Interstitial Defects in Strontium Titanate: DFT + Ud,pCalculations. Journal of Physical Chemistry C, 126(43), 18439–18465. https://doi.org/10.1021/acs.jpcc.2c04681
Yurkiv, V., Constantin, G., Hornes, A., Gondolini, A., Mercadelli, E., Sanson, A., Dessemond, L., & Costa, R. (2015). Towards understanding surface chemistry and electrochemistry of La0.1Sr0.9TiO3-α based solid oxide fuel cell anodes. Journal of Power Sources, 287, 58–67. https://doi.org/10.1016/j.jpowsour.2015.04.039
Zhang, L., Liu, B., Zhuang, H., Kent, P. R. C., Cooper, V. R., Ganesh, P., & Xu, H. (2016). Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations. Computational Materials Science, 118, 309–315. https://doi.org/10.1016/j.commatsci.2016.02.041
Zhang, S. L., Li, C. X., & Li, C. J. (2014). Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 264, 195–205. https://doi.org/10.1016/j.jpowsour.2014.04.094
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Victor Ernesto Tagarelli Gaete, Jesús Vega-Castillo, Mariela Ortiz, Alejandra Montenegro-Hernandez

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.













