Effect of drying and crop management on physical properties associated with kernel hardness in maize hybrids

Authors

  • Marcos Actis Área de Ciencia de los Alimentos, Facultad Ciencias Agrarias, Universidad Nacional Mar del Plata (FCA – UNMdP) - Núcleo Tecnología de Semillas y Alimentos (TECSE), Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires (FIO - UNCPBA), Buenos Aires - Argentina
  • Miriam Cocconi Núcleo Tecnología de Semillas y Alimentos (TECSE), Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires (FIO - UNCPBA), Buenos Aires - Argentina
  • Abel Farroni Laboratorio de Calidad de Agua, Suelos y Alimentos, Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria (EEA Pergamino, INTA), Buenos Aires - Argentina
  • Ricardo Bartosik Laboratorio de Poscosecha de Granos, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria ((EEA Balcarce, INTA), Buenos Aires - Argentina
  • María Cristina Gely Núcleo Tecnología de Semillas y Alimentos (TECSE), Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires (FIO - UNCPBA), Buenos Aires - Argentina
  • Ana María Pagano Núcleo Tecnología de Semillas y Alimentos (TECSE), Departamento de Ingeniería Química y Tecnología de Alimentos, Facultad de Ingeniería, Universidad Nacional del Centro de la Provincia de Buenos Aires (FIO - UNCPBA), Buenos Aires - Argentina

DOI:

https://doi.org/10.33414/rtyc.44.52-64.2022

Keywords:

’flint’ maize, artificial drying, test weight, percent floaters, milling ratio

Abstract

The effect of different drying treatments (natural, 50 and 70 °C) and crop management (without and with re-fertilization at pre-silking) on the endospermic hardness in four hybrids maize (AW 190, NK 940, Condor and Mill 522) was studied. Hardness was assessed by test weight (TW), percent floaters (PF) in NaNO3 and CCl4, and milling ratio (MR). The trial was based on a factorial design. Generally, high TW and MR values, and low PF values are associated with flintier maizes. It was observed that artificial drying (at 50 and 70 °C) decreased MR, increased PF, and did not produce major changes in TW, thus decreasing hardness. Cóndor (natural drying) and with re-fertilization (drying at 50 °C), Mill 522 (natural drying and at 50 °C) and in the control management (drying at 70 °C) hybrids achieved hardness values for 'Premium' quality. The techniques used allowed to classify the hybrids by their hardness and to evaluate the effect of the drying temperature on it.

Downloads

Download data is not yet available.

References

Actis, M.; Ordoñez, M.; Gely, C.; Pagano, A. (2020). Effect of drying temperature on physical properties of flint maize hybrids with different crop managements. International Journal of Postharvest Technology and Innovation, 7, 271-294.

Akton Associates Incorporated. (2011). Akton Psychrometric Chart. Industrial Psychrometric Software Engineers, Oklahoma, USA.<http://www.aktonassoc.com/Software.htm>

ASAE. (2003). Moisture Measurement – Unground Grain and Seeds. S352.2. FEB03. ASAE Standards, Standards Engineering Practices Data. ASAE, St. Joseph, MI.

Blandino, M., Ciro Mancini, M., Peila, A., Rolle, L., Vanara, F., Reyneri, A. 2010. Determination of maize kernel hardness: comparison of different laboratory tests to predict dry-milling performance. J. Sci. Food Agric. 90, 1870-1878.

Brekke, O.L.; Griffin, E.L., Jr.; Shove, G.C. (1973). Dry milling of corn artificially dried at various temperatures. Transactions of the ASAE, 16, 761-765.

Cirilo, A.G. (2002). Maíz colorado duro: el manejo del cultivo y la calidad comercial. EEA Pergamino-INTA. <http://www.inta.gov.ar/balcarce/info/documentos/agric/cereales/maiz/sis/cirilo.htm>. (Accedido el 11 de Noviembre de 2012).

De Dios, C.A.; Puig, R.C.; Robutti, J.L. (1990). Caracterización de la calidad del maíz argentino. Informe Técnico N° 241, INTA E.E.A. Pergamino, Argentina. pp. 12.

Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; González, L.; Tablada, M.; Robledo, C.W. (2021). InfoStat versión 2021. Centro de Transferencia InfoStat, Universidad Nacional de Córdoba, Argentina. <http://www.infostat.com.ar>. (Accedido el 2 de Diciembre de 2021).

Esmaeili, A.; Shokoohi, Z. (2011). Assessing the effect of oil price on world food prices: application of principal component analysis. Energy Policy, 39, 1022-1025.

Gely, M.C.; Santalla, E.M. (2007). Moisture diffusivity in quinoa (Chenopodium quinoa Willd.) seeds: effect of air temperature and initial moisture content of seeds. Journal of Food Engineering, 78, 1029-1033.

Hall, G.E.; Hill, L.D. (1972). Test weight of shelled corn and soybean during drying. En: Proc. Grain Damage Symp., Ohio State University, Columbus, OH.

Kirleis, A.W.; Stroshine, R.L. (1990). Effects of hardness and drying air temperature on breakage susceptibility and dry-milling characteristics of yellow dent corn. Cereal Chemistry, 67, 523-528.

Kljak, K.; Duvnjak, M.; Grbeša, D. (2018). Contribution of zein content and starch characteristics to vitreousness of commercial maize hybrids. Journal of Cereal Science, 80, 57-62.

Lepes, I.T.; Mohito, R.M.; Cedro, A.V.; Ruegg, O.E. (1976). Test de flotación con maíces duros argentinos. I Congreso Nacional de Maíz. Pergamino, Bs. As., Argentina. pp. 287-298.

Mc Donough, C.M.; Floyd, C.D.; Waniska, R.D.; Rooney, L.W. (2004). Effect of accelerated aging on maize, sorghum, and sorghum meal. Journal of Cereal Science, 39, 351-361.

Mestres, C.; Matencio, F. (1996). Biochemical basis of kernel milling characteristics and endosperm vitreousness of maize. Journal of Cereal Science, 24, 283-290.

Ordóñez, M.R.; Gely, M.C.; Pagano, A.M. (2012). Estudio de las propiedades físicas y de la cinética de secado de granos de maíz colorado duro. Avances en Ciencia e Ingeniería, 3, 153-171.

Paulsen, M.R.;Hill, L.D.; White, D.G.; Sprague, G.F. (1983). Breakage susceptibility of corn-belt genotypes. Transactions of the ASAE, 26, 1830-1841.

Peplinski, A.J.; Anderson, R.A.; Brekke, O.L. (1982). Corn dry milling as influenced by harvest and drying conditions. Transactions of the ASAE, 25, 1114-1117.

Peplinski, A.J.; Brekke, O.L.; Griffin, E.L.; Hall, G.; Hill, L.D. (1975). Corn quality as influenced by harvest and drying conditions. Cereal Foods World, 20, 145-154.

Peplinski, A.J.; Paulsen, M.R.; Anderson, R.A.; Kwolek, W.F. (1989). Physical, chemical, and dry-milling characteristics of corn hybrids from various genotypes. Cereal Chemistry, 66, 117-120.

Peplinski, A.J.; Paulsen, M.R.; Bouzaher, A. (1992). Physical, chemical and dry-milling properties of corn varying density and breakage susceptibility. Cereal Chemistry, 69, 397-400.

Peplinski, A.J.; Paulis, J.W.; Bietz, J.A.; Pratt, R.C. (1994). Drying of high-moisture corn: changes in properties and physical quality. Cereal Chemistry, 71, 129-133.

Pomeranz, Y.; Hall, G.E.; Czuchajowska, Z.; Lai, F.S. (1986). Test weight, hardness and breakage susceptibility of yellow dent corn hybrids. Cereal Chemistry, 63, 349-351.

Robutti, J.L.; Borrás, F.S.; Ferrer, M.E.; Bietz, J.A. (2000). Grouping and identification of Argentine maize races by chemometric analysis of zein RP-HPLC data. Cereal Chemistry, 77, 91-95.

Saavedra, J.; Córdova, A.; Gálvez, l.; Quezada, C.; Navarro, R. (2013). Principal Component Analysis as an exploration tool for kinetic modeling of food quality: A case study of a dried apple cluster snack. Journal of Food Engineering, 119, 229-235.

SAGPyA. (Secretaría de Agricultura, Ganadería, Pesca y Alimentación de la República Argentina). (1997). Norma XXIX de Resolución Número 757. Boletín Oficial, 17 de octubre de 1997. Buenos Aires, Argentina, pp. 17. http://www.infoleg.gov.ar. Accedido el 5 de abril de 2019.

Serignese, A.D.; Pescio, F.E. (1995). Maíz colorado duro. Una alternativa interesante. Serie Divulgación N° 1. Dirección de Producción Agrícola Secretaría de Agricultura, Ganadería y Pesca. pp. 1-36.

Sharma, V., Basu, S., Lal, S.K., Anand, A., Hossain, F., Munshi, A.D. 2017. Comparison of physical and physiological properties of specialty maize inbred lines. Chem. Sci. Rev. Lett. 6, 1758-1763.

Watson, S.A. (1987). Measurement and maintenance of quality. En: Watson, S.A., Ramstad, P.E., Eds. Corn: chemistry and technology. American Association of Cereal Chemists: St. PauI, MN. pp. 125-183.

Wichser, W.R. (1961). The world of corn processing. American Miller and Processor, 89, 29-31.

Wu, Y.V. (1992). Corn hardness as related to yield and particle size of fractions from a micro hammer-cutter mill. Cereal Chemistry, 69, 343-347.

Published

2022-06-22

How to Cite

Actis, M., Cocconi, M., Farroni, A., Bartosik, R., Gely, M. C., & Pagano, . A. M. (2022). Effect of drying and crop management on physical properties associated with kernel hardness in maize hybrids. Technology and Science Magazine, (44), 52–64. https://doi.org/10.33414/rtyc.44.52-64.2022