Low cost particulate sensor characterization
DOI:
https://doi.org/10.33414/rtyc.42.96-111.2021Keywords:
sensor, low cost, particulate matter, characterizationAbstract
Particulates in the air are an important indicator of air quality, with proven health effects. At the surface level, they are characterized as particulate matter and their regulatory measurement is scarce or non-existent in countries with limited resources. That is why low-cost sensors represent a valuable alternative to acquiring this type of environmental data, but they have numerous limitations and must be properly characterized before use. A study of performance indicators of a low-cost optical sensor for particulate matter is presented, based on laboratory tests, simulations with a physical approach, and comparisons with calibrated equipment. Valuable information on sensor limitations was found and a control code was developed to warn the user of suspicious data.
Downloads
References
Alfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., ... & Polichetti, T. (2020). “A review of low-cost particulate matter sensors from the developers’ perspectives”. Sensors, 20(23), 6819.
AQ-SPEC. South Coast Air Quality Management District (2021). url: http://www.aqmd.gov/aq-spec. Visitado el 15-10-2021.
Campbell, J. L., Rustad, L. E., Porter, J. H., Taylor, J. R., Dereszynski, E. W., Shanley, J. B., ... & Boose, E. R. (2013). “Quantity is nothing without quality: Automated QA/QC for streaming environmental sensor data”. BioScience, 63(7), 574-585.
Chow, J. C., & Watson, J. G. (1998). “Guideline on speciated particulate monitoring”. Report prepared for US Environmental Protection Agency, Research Triangle Park, NC, by Desert Research Institute, Reno, NV.
Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., ... & Pope, F. D. (2018). “Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring”. Atmospheric Measurement Techniques, 11(2), 709-720.
Hagan, D. H., & Kroll, J. H. (2020). “Assessing the accuracy of low-cost optical particle sensors using a physics-based approach”. Atmospheric measurement techniques, 13(11), 6343-6355.
Kaiser, H., & Specker, H. (1956). “Bewertung und vergleich von analysenverfahren”. Fresenius' Zeitschrift für analytische Chemie, 149(1), 46-66.
Karagulian, F., Barbiere, M., Kotsev, A., Spinelle, L., Gerboles, M., Lagler, F., ... & Borowiak, A. (2019). “Review of the performance of low-cost sensors for air quality monitoring”. Atmosphere, 10(9), 506.
Kumar, P., Morawska, L., Martani, C., Biskos, G., Neophytou, M., Di Sabatino, S., ... & Britter, R. (2015). “The rise of low-cost sensing for managing air pollution in cities”. Environment international, 75, 199-205.
Mie, G. (1976). “Contributions to the optics of turbid media, particularly of colloidal metal solutions”. Contributions to the optics of turbid media, 25(3), 377-445.
Open-Seneca. Open-Seneca organization. 2021. url: https://open-seneca.org/ (visitado 07-06-2021).
Pascal, M., Corso, M., Chanel, O., Declercq, C., Badaloni, C., Cesaroni, G., ... & Aphekom Group. (2013). “Assessing the public health impacts of urban air pollution in 25 European cities: results of the Aphekom project”. Science of the Total Environment, 449, 390-400.
PMS5003 Datasheet (2021). url: https://www.aqmd.gov/docs/default-source/aq-spec/resources-page/plantower
pms5003-manual_v2-3.pdf. Visitado el 04-06-2021.
Polidori, A., Papapostolou, V., & Zhang, H. (2016). “Laboratory evaluation of low-cost air quality sensors”. South Coast Air Quality Management District: Diamondbar, CA, USA.
Sayahi, T., Butterfield, A., & Kelly, K. E. (2019). “Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors”. Environmental pollution, 245, 932-940.
Scagliotti, A. F., & Jorge, G. A. (2020a). “Análisis de un año de mediciones con fotómetro solar en el noroeste del conurbano bonaerense”. ANALES AFA, 31(2), 46-50.
Scagliotti, A. F., & Jorge, G. A. (2020b). “Inter-comparison of environmental low-cost sensors on Arduino platform”. Journal of the IEST, 63(1), 35-45.
Seinfeld, J. y Pandis S. “Atmospheric chemistry and physics: from air pollution to climate change”. John Wiley & Sons, 2016.
Sensirion. Particulate Matter Sensor SPS30 (2021). url: https://www.sensirion.com/en/environmental-sensors/particulate-matter-sensors-pm25/. Visitado el 15-10-2021.
Taylor, K. E. (2001). “Summarizing multiple aspects of model performance in a single diagram”. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.
Tian, H., Qiu, P., Cheng, K., Gao, J., Lu, L., Liu, K., & Liu, X. (2013). “Current status and future trends of SO2 and NOx pollution during the 12th FYP period in Guiyang city of China”. Atmospheric Environment, 69, 273-280.
Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J., & Biswas, P. (2015). “Laboratory evaluation and calibration of three low-cost particle sensors for particulate matter measurement”. Aerosol Science and Technology, 49(11), 1063-1077.
Williams, R., Long, R., Beaver, M., Kaufman, A., Zeiger, F., Heimbinder, M., ... & Griswold, W. (2014). “Sensor evaluation report”. US Environmental Protection Agency, Washington, DC, USA.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ariel Scagliotti, Guillermo Jorge
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.