Controllable horizontal turntable optimization for a head-related transfer function measurement system

Authors

  • Martín Mendez Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba - Argentina
  • Fabián C. Tommasini Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional, Facultad Regional Córdoba - Argentina https://orcid.org/0000-0002-3916-3451
  • Sebastián P. Ferreyra Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba - Argentina
  • R. Martín Guido Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba - Argentina
  • Juan Cruz Bordón Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba - Argentina
  • Fermín Scaliti Centro de Investigación y Transferencia en Acústica (CINTRA), CONICET, Universidad Tecnológica Nacional Facultad Regional Córdoba - Argentina

DOI:

https://doi.org/10.33414/rtyc.42.12-26.2021

Keywords:

HRTF measurement system, Controllable turntable, FEM

Abstract

To computationally simulate spatially distributed sound sources and achieve three-dimensional sound, head transfer functions (HRTFs) are used as filters. To complete a dense sphere of points with these functions around a subject, it is necessary to position a sound source at different angles and capture the impulsive responses using ear microphones. Currently, we are developing a HRTF measurement system that has a vertical semicircular support arc for loudspeakers and a controllable horizontal turntable where the subject is located. We have a turntable originally designed for another purpose and that supports up to 400 N of weight. In this work, it is proposed to redesign and optimize it to allow the movement of a seated person, tolerating up to ~2200 N. Based on tests carried out on the current platform, unwanted physical situations were detected and solutions validated through theoretical models and numerical simulations of static behavior were proposed.

Downloads

Download data is not yet available.

References

Blauert, J. (1997). Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press.

Brinkmann, F., Roden, R., Lindau, A., & Weinzierl, S. (2014). Audibility of different head-above-torso orientations in head-related transfer functions. Forum Acusticum.

Brush, D. O., & Almroth, B. O. (1975). Buckling of Bars, Plates and Shells. McGraw-Hill Inc.,US.

Carpentier, T., Bahu, H., Noisternig, M., & Warusfel, O. (2014). Measurement of a head-related transfer function database with high spatial resolution. 7th Forum Acusticum(EAA).

Ferreyra, S. P., López, J. F., Moreno, A. M., Bertinatti, A. J., Vicente, F., Cravero, G. A., Novillo, D. A., & Lopensino, J. (2019). Validación de desplazamiento angular de una plataforma rotativa utilizada en sistema automático de medición de dispositivos acústicos. V Jornadas de Acústica, Audio y Sonido (JAAS 2019), Universidad Nacional de Tres de Febrero.

Ferreyra, S. P., Moreno, A. M., Morales, J. I., Novillo, D. A., López, J. F., Gelerstein, S. I., Simes, J. Y., Rametta, J., Cravero, G. A., & Gilberto, L. G. (2017). Diseño de Plataforma Rotativa para Medición de Dispositivos Acústicos. Mecánica Computacional, 35(2), 27-37.

Guido, R. M., Pucheta, M. A., Tommasini, F. C., Vergara, R. O., & Scaliti, F. (2019). Sistemas de Medición de HRTFS Individuales: Revisión del Estado del Arte y Desarrollos en Argentina. Mecánica Computacional, 37(5), 77-85.

Jenny C., & Reuter C. (2020). Usability of Individualized Head-Related Transfer Functions in Virtual Reality: Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization. JMIR Serious Games, 8(3), e17576. https://doi.org/10.2196/17576

Jones, R. M. (2006). Buckling of Bars, Plates, and Shells. Bull Ridge Corporation.

Majdak, P., Masiero, B., & Fels, J. (2013). Sound localization in individualized and non-individualized crosstalk cancellation systems. The Journal of the Acoustical Society of America, 133(4), 2055-2068. https://doi.org/10.1121/1.4792355

Middlebrooks, J. C. (1999). Virtual localization improved by scaling nonindividualized external-ear transfer functions in frequency. The Journal of the Acoustical Society of America, 106(3), 1493-1510. https://doi.org/10.1121/1.427147

Møller, H. (1992). Fundamentals of binaural technology. Applied Acoustics, 36(3-4), 171-218. https://doi.org/10.1016/0003-682X(92)90046-U

Møller, H., Hammershøi, D., Johnson, C. B., & Sørensen, M. F. (1999). Evaluation of Artificial Heads in Listening Tests. Journal of Audio Engineering Society, 47(3), 83-100.

Møller, H., Sørensen, M. F., Hammershøi, D., & Jensen, C. B. (1995). Head-Related Transfer Functions of Human Subjects. Journal of the Audio Engineering Society, 43(5), 300-321.

MotionKing, M. I. (2020). HB Stepper Motor Catalog. MotionKing Motor Industry CO., Ltd. http://www.motionking.com/Products/Hybrid_Stepper_Motors/2-phase/23H2A_Stepper_Motor_57mm_1.8degree.htm

Motovario, T. G. C. (2020). ATEX Catalogo Técnico—VSF / IEC. Teco Group Company. https://www.motovario.com/spa/download/reductores-de-tornillo-sin-fin--serie-vsf#reductores-de-tornillo-sin-fin-combinados-y-con-pre-reductor

Oñate Ibáñez de Navarra, E. (1995). Cálculo de estructuras por el método de elementos finitos: Análisis elástico lineal. Centro Internacional de Métodos Numéricos en Ingeniería.

Prato, C. A., Flores, F. G., & Godoy, L. A. (2009). Introducción a la teoría de la elasticidad (3.a ed.). Universitas - Editorial Científica Universitaria. https://isbn.cloud/9789875720596/introduccion-a-la-teoria-de-la-elasticidad/

Richter, J.-G., Behler, G., & Fels, J. (2016). Evaluation of a Fast HRTF Measurement System. Audio Engineering Society Convention 140. http://www.aes.org/e-lib/browse.cfm?elib=18197

Sridhar, R., Tylka, J. G., & Choueiri, E. (2017, octubre 8). A Database of Head-Related Transfer Functions and Morphological Measurements. Audio Engineering Society Convention 143. http://www.aes.org/e-lib/browse.cfm?elib=19308

Timoshenko, S., & Woinowsky-Krieger, S. (1959). Theory of Plates and Shells, (2 edition). McGraw-Hill College.

Watanabe, K., Iwaya, Y., Suzuki, Y., Takane, S., & Sato, S. (2014). Dataset of head-related transfer functions measured with a circular loudspeaker array. Acoustical Science and Technology, 35(3), 159-165. https://doi.org/10.1250/ast.35.159

Welch, G., & Bishop, G. (2006). An Introduction to the Kalman Filter. Proc. Siggraph Course, 8.

Wenzel, E. M., Arruda, M., Kistler, D. J., & Wightman, F. L. (1993). Localization using nonindividualized head-related transfer functions. The Journal of the Acoustical Society of America, 94(1), 111-123. https://doi.org/10.1121/1.407089

Young, W. C., Budynas, R. G., & Sadegh, A. M. (2012). Roark’s Formulas for Stress and Strain, Eighth Edition. McGraw-Hill.

Yu, G., Wu, R., Liu, Y., & Xie, B. (2018). Near-field head-related transfer-function measurement and database of human subjects. The Journal of the Acoustical Society of America, 143(3), EL194-EL198. https://doi.org/10.1121/1.5027019

Zienkiewicz, O. C., & Taylor, R. L. (1994a). El Método de los Elementos Finitos: Formulación básica y problemas lineales (Vol. 1). McGraw-Hill.

Zienkiewicz, O. C., & Taylor, R. L. (1994b). El método de los Elementos Finitos: Mecánica de Sólidos y Fluidos. Dinámica y no Linealidad. (Cuarta, Vol. 2). McGraw-Hill.

Published

2021-09-03

How to Cite

Mendez, M., Tommasini, F. C., Ferreyra, S. P., Guido, R. M., Bordón, J. C., & Scaliti, F. (2021). Controllable horizontal turntable optimization for a head-related transfer function measurement system. Technology and Science Magazine, (42), 12–26. https://doi.org/10.33414/rtyc.42.12-26.2021