Deep Learning with RGB-D Imaging: Object Classification and Pose Estimation

Authors

  • Juan Cruz Gassó Loncan Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, Facultad de Ingeniería de la Universidad Nacional de Entre Ríos, Entre Ríos - Argentina
  • Gerardo Gabriel Gentiletti Facultad de Ingeniería de la Universidad Nacional de Entre Ríos, Entre Ríos - Argentina

DOI:

https://doi.org/10.33414/rtyc.37.146-156.2020

Keywords:

Deep learning, Robotic vision, RGB-D

Abstract

As part of the doctoral thesis, the objective is to develop a Human-Machine Interface to control a assistive robotic arm with more than 6 degrees of freedom. Deep learning techniques for object recognition and pose estimation in order to be able to interact with them is presented. Three multimodal convolutional neural network models were implemented using RGB-D images from the BigBIRD database. Each model have three classification outputs:  22 Objects - 5 Cameras - 8 Rotation. The best of model achieved 96% accuracy for objects, 98% for camera and 56% for rotation.

Downloads

Download data is not yet available.

Published

2020-10-22

How to Cite

Gassó Loncan, J. C., & Gentiletti, G. G. (2020). Deep Learning with RGB-D Imaging: Object Classification and Pose Estimation. Technology and Science Magazine, (37), 146–156. https://doi.org/10.33414/rtyc.37.146-156.2020