Methodology study based on corrosion potential monitoring for cementitious mixtures performance evaluation – Part 2.

Authors

  • Thomas Mcquay Facultad de Ingeniería y Ciencias Agraria, Universidad Católica Argentina, Argentina.
  • Enzo David Gomez Facultad de Ingeniería y Ciencias Agraria - Universidad Católica Argentina, Argentina. / Departamento de Corrosión, Gerencia de Materiales, Comisión Nacional de Energía Atómica, Argentina.

DOI:

https://doi.org/10.33414/rtyc.53.79-94.2025

Keywords:

Durability, Reinforcement corrosion, Cementitious mixture performance evaluation

Abstract

Concrete is a physical and chemical protect barrier for steel against corrosion. Due to concrete pH (≈13), a deterioration inhibitor stable oxide film (passive layer) develops on embedded steel. When concrete is contaminated with aggressive environmental agents, the passive layer is damaged, and corrosion begins. In well-placed and defect-free concrete, the corrosion onset time (OCORR) will depend on the quality of the mixture and environmental exposure conditions. This work shows advances in the search for a methodology to evaluate the performance of cementitious mixtures that uses the occurrence of the corrosion onset (OCORR) as an indicator. Correlation between electrochemical parameters, recorded on specimens with geometric characteristics of industrial-scale structural elements, and environmental exposure was analyzed and the possibility of detecting the occurrence of OCORR based on corrosion potential monitoring (ECORR) was recognized.

Downloads

References

Alonso, C., Castellote, M., & Andrade, C. (2002). Chloride threshold dependence of pitting potential of reinforcements. Electrochimica Acta, 47(21), 3469–3481. https://doi.org/10.1016/S0013-4686(02)00283-9

American Society for Testing and Materials. (2014). ASTM C305 - Standar practice for mechanical mixing of hydraulic cement pastes and mortars of plastic consistency.

Andrade, C., & Alonso, C. (1996). Corrosion rate monitoring in the laboratory and on-site. Construction and Building Materials, 10(5), 315–328. https://doi.org/10.1016/0950-0618(95)00044-5

Andrade, Carmen, Alonso, C., Gulikers, J., Polder, R., Cigna, R., Vennesland, … Elsener, B. (2004). Recommendations of RILEM TC-154-EMC: “Electrochemical techniques for measuring metallic corrosion” Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method. Materials and Structures, 37(273), 623–643. https://doi.org/10.1617/13952

Angst, U. M., Boschmann, C., Wagner, M., & Elsener, B. (2017). Experimental Protocol to Determine the Chloride Threshold Value for Corrosion in Samples Taken from Reinforced Concrete Structures. Journal of Visualized Experiments, (126). https://doi.org/10.3791/56229-v

Bentur, A., Diamond, S., & Berke, N. S. (1997). Steel corrosion in concrete: fundamentals and civil engineering practice. London, UK: E & FN Spon.

Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. (2013). Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair (2nd ed.). Weinheim, Germany: WILEY-VCH.

Cigna, R., Proverbio, E., & Rocchini, G. (1993). A study of reinforcement behaviour in concrete structures using electrochemical techniques. Corrosion Science, 35(5–8), 1579–1584. https://doi.org/10.1016/0010-938X(93)90387-V

Duffó, G. S., & Farina, S. B. (2016). La corrosión de estructuras de hormigón armado (1ra ed.). Saarbrucken, Alemania: Editorial Academica Española.

Duffó, G. S., Gomez, E. D., & Vazquez, D. R. (2018). Revisiting the Effect of the Corrosion Potential, the Matrix Resistivity and the Oxygen Availability on the Corrosion Rate of Steel Bars Embedded in Mortar. Journal of Scientific and Engineering Research, 5(9), 221–232.

Galvele, J. R., & Duffó, G. S. (2006). Degradacion de materiales I: Corrosión. (1ra ed.). Buenos Aires, Argentina: Jorge Baudino Ediciones: Instituto Sábato.

Gouda, V. K., & Halaka, W. Y. (1970). Corrosion and corrosion inhibition of reinforcing steel II. Embedded in concrete. British Corrosion Journal, 5(5), 204–208. https://doi.org/10.1179/000705970798324478

Instituto Argentino de Normalización y Certificación. (2017). IRAM 50000 - Cementos para uso general. Composición y requisitos.

Instituto Argentino de Normalización y Certificación. (2018). IRAM 1890 - Hormigones autocompactantes (HAC). Métodos de ensayo. Parte 1 - Método de ensayo de extendido y el tiempo T50.

Instituto Argentino de Normalización y Certificación. (2020a). IRAM 1536 - Hormigón fresco de cemento. Método de ensayo de la consistencia utilizando el tronco de cono.

Instituto Argentino de Normalización y Certificación. (2020b). IRAM 1666 - Hormigón elaborado. Requisitos y control de la producción.

Li, L., & Sagüés, A. A. (2001). Chloride Corrosion Threshold of Reinforcing Steel in Alkaline Solutions—Open-Circuit Immersion Tests. Corrosion, 57(1), 19–28. https://doi.org/10.5006/1.3290325

Mietz, J., & Isecke, B. (1996). Monitoring of concrete structures with respect to rebar corrosion. Construction and Building Materials, 10(5), 367–373. https://doi.org/10.1016/0950-0618(95)00016-X

Sathiyanarayanan, S., Natarajan, P., Saravanan, K., Srinivasan, S., & Venkatachari, G. (2006). Corrosion monitoring of steel in concrete by galvanostatic pulse technique. Cement and Concrete Composites, 28(7), 630–637. https://doi.org/10.1016/j.cemconcomp.2006.03.005

Tang, L., Frederiksen, J. M., Angst, U. M., Polder, R., Alonso, M. C., Elsener, B., … Pacheco, J. (2018). Experiences from RILEM TC 235-CTC in recommending a test method for chloride threshold values in concrete. RILEM Technical Letters, 3, 25–31. https://doi.org/10.21809/rilemtechlett.2018.55

Troncónis de Rincón, O., Romero de Carruyo, A., Andrade, C., Helene, P., & Diaz, I. (1998). Manual de inspección, evaluación y diagnostico de corrosión en estructuras de hormigon armado. Red DURAR - Programa CYTED.

Tuutti, K. (1982). Corrosion of steel in concrete. Royal Institute of Technology. Retrieved from https://portal.research.lu.se/en/publications/corrosion-of-steel-in-concrete

Published

2025-07-01

How to Cite

Mcquay, T., & Gomez, E. D. (2025). Methodology study based on corrosion potential monitoring for cementitious mixtures performance evaluation – Part 2. Technology and Science Magazine, (53), 79–94. https://doi.org/10.33414/rtyc.53.79-94.2025