Influence of convective drying process on the content of anthocyanins, total phenolic compounds, antimicrobial and antioxidant capacity in strawberries (Fragaria annanasa var. San Andrea)

Authors

  • Julia Luisetti Centro de Investigación y Desarrollo en Tecnología de Alimentos, Facultad Regional Rosario, Universidad Tecnológica Nacional - Argentina
  • María Florencia Balzarini Centro de Investigación y Desarrollo en Tecnología de Alimentos, Facultad Regional Rosario, Universidad Tecnológica Nacional - Argentina
  • María Agustina Reinheimer Centro de Investigación y Desarrollo en Tecnología de Alimentos, Facultad Regional Rosario, Universidad Tecnológica Nacional - Argentina
  • Fernando Stoppani Centro de Investigación y Desarrollo en Tecnología de Alimentos, Facultad Regional Rosario, Universidad Tecnológica Nacional - Argentina
  • María Cristina Ciappini Centro de Investigación y Desarrollo en Tecnología de Alimentos, Facultad Regional Rosario, Universidad Tecnológica Nacional - Argentina

DOI:

https://doi.org/10.33414/rtyc.48.56-72.2023

Keywords:

strawberries, drying, color, anthocyanins, DPPh, CPT

Abstract

The strawberry (Fragaria ananassa) has bioactive compounds of nutritional interest and high antioxidant activity, which bestows important benefits to human health. However, they are highly perishable products. The objective of this work was to dehydrate strawberries by convective drying, to extend their useful life. Three drying air temperatures were tested: 60º, 70º and 80 ºC and a speed of 0.7 m/s. To characterize the flours obtained, the color, antimicrobial and antioxidant capacity, the content of anthocyanins and total phenolic compounds (CPT) were measured in hydroalcoholic extracts, generated by shaking. The strawberry flour obtained preserved or increased the CPT content and the antioxidant capacity, particularly when the raw material was dehydrated at 70 ºC. The anthocyanin content decreased and the color was also modified. The potential of strawberry flours for its use as an ingredient in food formulation was evidenced, due to its contributions of bioactive compounds.

Downloads

Download data is not yet available.

References

Alvarado Choez, J. J. (2021). Efecto de un recubrimiento comestible a base de mucílago de chía y ácidos orgánicos para alargar la vida útil en frutilla (Fragaria vesca). Tesis Universidad Agraria del Ecuador.

Askari, G. R., Emam-Djomeh, Z. y Mousavi, S. M. (2009). An investigation of the effects of drying methods and conditions on drying characteristics and quality attributes of agricultural products during hot air and hot air/microwave-assisted dehydration. Dry. Technol., 27, 831–841. doi.org/10.1080/07373930902988106

Badjakov, I., Nikolova, M., Gevrenova, R., Kondakova, V., Todorovska, E. y Atanassov, A. (2008). Bioactive compounds in small fruits and their influence on human health. Biotechnology & Biotechnological Equipment, 22, 581-587.doi.org/10.1080/13102818.2008.10817517

Becerra, C., Robledo, P. y Defilippi, B. (2013). Cosecha y poscosecha de frutilla [en línea]. Chillan: Boletín INIA - Instituto de Investigaciones Agropecuarias 262. Disponible en: https://hdl.handle.net/20.500.14001/7626 (Consultado: 2 marzo 2023).

Bonaldi, E. (2020). Evaluación de la capacidad antioxidante de harina de frutilla (Fragaria ananassa) proveniente de las variedades Festival y Benicia. Tesis de Maestría en Tecnología de los Alimentos. Universidad Tecnológica Nacional.

Bruijn, J. y Bórquez, R. (2014). Quality retention in strawberries dried by emerging dehydration methods. Food Research International, 63, 42–48. doi/10.1016/j.foodres.2014.03.029

Calín-Sanchez, A., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, A. A. y Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods, 9(9), 1261. doi.org/10.3390/foods9091261

Cantillano, R. F. F., Ávila, J. M. M., Peralba, M. C. R., Pizzolato, T. M. y Toralles, R. P. (2012). Actividad antioxidante, compuestos fenólicos y ácido ascórbico de frutillas en dos sistemas de producción. Horticultura Brasileira, 30, 620-626. doi.org/10.12691/jfnr-5-8-8

Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M. A., & Vázquez-Odériz, M. L. (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria x ananassa Duch, cv Selva). Journal of Food Composition and Analysis, 28(1), 23-30. doi: 10.1016/j.jfca.2012.07.004

Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.,; Gonzalez, L.; Tablada, M. y Robledo, C.W. (2008). InfoStat, versión 2008, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Di Stefano, R., Cravero, M. C. y Gentilini, N. (1989). Metodi per lo studio dei polifenoli dei vini. L’enotecnico, 5, 83-90.

Doymaz, I. (2008). Convective drying kinetics of strawberry. Chemical Engineering and Processing, 47, 914-919. doi.org/10.1016/j.cep.2007.02.003

Erlund, I., Koli, R., Alfthan, G., Marniemi, J., Puukka, P., Mustonen, P., Mattila, P. y Jula, A. (2008). Favorable effects of berry consumption on platelet function, blood pressure, and HDL colesterol. American Journal of Clinical Nutrition, 87, 323-31.

Ferreyra, S. R. M., Viña, Z., Mugridge, A. y Chaves, A. (2007). Growth and ripening season effects on antioxidant capacity of strawberry cultivar. Scientia Horticulturae, 112, 27-32.doi.org/10.1016/j.scienta.2006.12.001

Fukai, T., Kaitou, K. y Terada, S. (2005). Antimicrobial activity of 2-arylbenzofurans from Morus species against methicillin-resistant Staphylococcus aureus. Fitoterapia 76, 708 – 711. doi.org/10.1016/j.fitote.2005.06.012

Hasna, S. S., Nugrahini, A. D. y Falah, M. A. F. (2022). Consumer acceptance of quality characterization of dehydrated strawberry product. IOP Conf. Series: Earth and Environmental Science 980, 012035. doi:10.1088/1755-1315/980/1/012035

Ivars, Y. y Mora, J. (2020). Evaluación de parámetros de calidad poscosecha en tres variedades de frutilla (Fragaria ananassa Duch.) en Los Antiguos, Santa Cruz. Disponible en: https://inta.gob.ar/sites/default/files/informe_tecnico_post_cosecha_frutilla_yi_final_pdf.pdf

Kostecka-Gugała, A., Ledwożyw-Smoleń, I., Augustynowicz, J., Wyżgolik, G., Kruczek, M. y Kaszycki, P. (2015). Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chem., 13, 1313–1325.doi: 10.1515/chem-2015-0143

Krzykowski A., Dziki, D., Rudy, S., Gawlik-Dziki, U., Janiszewska-Turak, E. y Biernacka B. (2020). Wild Strawberry Fragaria vesca L.: Kinetics of Fruit Drying and Quality Characteristics of the Dried Fruits. Processes, 8, 1265. doi:10.3390/pr8101265

Levate-Macedo, L., Jefferson, L., Gomes-Correa, L., da Silva-Araújo, C., Costa-Vimercati, W. y Petri, I. (2021). Convective Drying with Ethanol Pre‐treatment of Strawberry Enriched with Isomaltulose, Food and Bioprocess Technology, 14, 2046–2061. doi.org/10.1007/s11947-021-02710-2

López-Ortiz, A., Méndez-Laguna, L. L., Delesma, C., Longoria, A., Escobar, J. y Muñiz, J. (2020). Understanding the drying kinetics of phenolic compounds in strawberries: An experimental and density functional theory study. Innov. Food Sci. Emerg. Technol., 60, 102283. doi: 10.1016/j.ifset.2019.102283

Luisetti, J. (2023). Optimización de las condiciones del proceso de acondicionamiento y obtención de harina integral del grano de quinoa (Chenopodium quinoa Willd.) en relación a su capacidad antioxidante y antimicrobiana. Tesis doctoral. Doctorado en Ingeniería. FCEIA. Universidad Nacional de Rosario. http://hdl.handle.net/2133/25544 Fecha: 2023-03

Martín-Gómez, J., Varo, M. A., Mérida, J. y Serratosa, M. P. (2020). Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT, 120, 108931. doi: 10.1016/j.lwt.2019.108931

Masciarelli, R., Lucero, H., Silvester, S. y Tosi, E. (2007). Evaluación de la capacidad antioxidante de harina de frambuesas obtenida luego del secado de los frutos a diferentes temperaturas y análisis estadístico del EC50. Disponible en: http://www.publitec.com.ar/contenido/objetos/Evaluaciondelacapacidad antioxidante.pdf

McMinn, W. A. M., McLoughlin, C. M. y Magee, T. R. A. (2005). Thin-layer modeling of microwave, microwave-convective, and microwave-vacuum drying of pharmaceutical powders, Dry. Technol, 23, 513–532. doi.org/10.1081/DRT-200054126

Méndez-Lagunas, L., Rodríguez-Ramírez, J., Cruz-Gracida, M., Sandoval-Torres, S. y Barriada-Bernal, G. (2017). Convective drying kinetics of strawberry (Fragaria ananassa): Effects on antioxidant activity, anthocyanins and total phenolic content. Food Chemistry, 230, 174–181. doi: 10.1016/j.foodchem.2017.03.010

Mierzwa, D. y Kowalski, S. J. (2016). Ultrasound-assisted osmotic dehydration and convective drying of apples: Process kinetics and quality issues. Chemical and Process Engineering – Inzynieria Chemicznai Procesowa, 37(3), 383–391. doi: 10.1515/cpe-2016-0031

Morales-Delgado, D. Y., Tellez-Medina, N. L. Rivero-Ramírez, S., Arellano-Cardenas, S., Lopez-Cortez, H,.Hernandez-Sanchez, G., Gutierrez-López L. y Cornejo-Mazon, M. (2014). Effect of convective drying on total anthocyanin content, antioxidant activity and cell morphometric parameters of strawberry parenchymal tissue (Fragaria ananassa Dutch). Revista Mexicana de Ingeniería Química, 13(1), 179-187.

Muzaffar, H., Rouf, A., Kanojia, V., Muzaffar, Z. y Noor F. (2018). Dehydration of Strawberry. A Review. Int. J. Curr. Microbiol. App. Sci., 7(1), 1216-1224. doi.org/10.20546/ijcmas.2018.701.148

National Committee for Clinical Laboratory Standards (2012). Performance standards for antimicrobial disk susceptibility tests, Approved Standard. 11th Edition, 32(1), 1-32.

Núñez-Mancilla, Y. N., Pérez-Won, M., Uribe, E., Vega-Gálvez, A. y Di Scala, K. (2013). Osmotic dehydration under high hydrostatic pressure: Effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT FoodSci. Technol., 52, 151–156.doi: 10.1016/j.lwt.2012.02.027

Odriozola, I. (2009). Obtención de zumos y frutos cortados con alto potencial antioxidante mediante tratamientos no térmicos. Tesis doctoral. Universitat de Lleida. Escola Tècnica Superior d’Enginyeria Agrària.

Oliveira, A. S., Niro, C. M., Bresolin, J. D., Soares, V. F., Ferreira, M. D., Sivieri, K. y Azeredo, H. M. C. (2021). Dehydrated strawberries for probiotic delivery: Influence of dehydration and probiotic incorporation methods. LWT Food Sci. Technol, 144, 111105. https://doi.org/10.1016/j.lwt.2021.111105

Olsson, M., Andersson, S., Berglund, R. y Gustavsson, K. (2007). Extracts from organically and conventionally cultivated strawberries inhibit cancer cell proliferation in vitro. Acta Horticulturae, 1, 189-194.doi: 10.1021/jf0524776

Ondarza-Beneitez, M. A. y Ciapara-Higuera, I. (2016). Importancia biotecnológica de las frutillas de ​berries​ en la salud humana. Biotecnología e Industria, 169, 1-18.

Pantelidis, G. E., Vasilakakis, M., Manganaris, G. A. y Diamantidis. G. (2007). Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chemistry 102, 777–783.doi.org/10.1016/j.foodchem.2006.06.021

Pathare, P. B., Opara, U. L. y Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60. doi:10.1007/s11947-012-0867-9

Peña-Varela, G., Salinas-Moreno, Y. y Ríos-Sánchez, R. (2006). Contenido de antocianinas totales y actividad antioxidante en frutos de frambuesa (Rubusidaeus L.) con diferente grado de maduración. Revista Chapingo Serie Horticultura, 12(2):159-163. doi:10.5154/R.RCHSH.2006.02.017

Pilco-Carrasco, A. S. (2017). Diseño de una planta procesadora para la obtención de pulpa de frutilla en la parroquia San Gerardo del Cantón Guano. Esc. Sup. Técnica del Chimborazo, Ecuador.

Radojčin, M., Pavkov, I., Bursać Kovačević, D., Putnik, P., Wiktor, A., Stamenković, Z., Kešelj, K., &Gere, A. (2021). Effect of selected drying methods and emerging drying intensification technologies on the quality of dried fruit: A Review. Processes, 9(1), 132. https://doi.org/10.3390/pr9010132

Rayaguru, K. y Routray, W. (2012). Mathematical modeling of thin layer drying kinetics of stone apple slices. Int. Food Res. J., 19, 1503–1510.doi.org/10.3390/pr10112464

Rekika, D., Khanizadeh, S., Deschênes, M., Levasseur, A., Charles, M.T., Tsao, R. y Yang, R. (2005). Antioxidant capacity and phenolic content of selected strawberry genotypes, Hortscience, 40(6), 1777–1781. doi: 10.21273/HORTSCI.40.6.1777

Sadilova, E., Carle, R. y Stintzing, F. C. (2007). Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Molecular Nutrition & Food Research, 51(12), 1461–1471.doi: 10.1002/mnfr.200700179

Sadowska, A., Swiderski, F. y Hallmann, E. (2020). Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Appl. Sci., 10, 4706. doi: 10.3390/app10144706

Sánchez, W., Murillo, E. y Méndez, J. (2010). Antioxidant potential of agroindustrial residues from three high consumption fruits in Tolima. Sci. et. Tech., 46, 143.

Scalzo, J., Stevenson, D. y Hedderley, D. (2013). Blueberry estimated harvest from seven new cultivars: Fruit and anthocyanins. Food Chem., 139, 44–50.doi: 10.1016/j.foodchem.2013.01.091

Shimada, K., Fujikawa, K., Yahara, K. y Nakamura, T. (1992). Antioxidative properties of xanthone on the auto oxidation of soybean in cylcodextrin emulsion. J. Agr. Food Chem., 40, 945-948.doi.org/10.1021/jf00018a005

Shrivastav, S., Ganorkar, P. M., Prajapati, K. M., & Patel, D. B. (2021). Drying kinetics, heat quantities, and physiochemical characteristics of strawberry puree by Refractance Window drying system. Journal of Food Process Engineering, 44(9), e13776.

Szadzinska, J., Kowalski, S. J. y Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer,103, (2016) 1065–1074. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.08.001

Tylewicz, U., Mannozzi, C., Romani, S., Castagnini, J. M., Samborska, K., Rocculi, P. y Dalla Rosa, M. (2019). Chemical and physico-chemical properties of semi-dried organic strawberries enriched with bilberry juice-based solution. LWT Food Sci. Technol., 114, 108377. doi: 10.1016/j.lwt.2019.108377

Waterhouse, A. L. (2003). Determination of total phenolics. In Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Inc. https://doi.org/10.1002/0471142913.fai0101s06

Xu, B., Sylvain Tiliwa, E., Yan, W., Roknul Azam, S. M., Wei, B., Zhou, C., ... Bhandari, B. (2022). Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International, 152, Article 110744. https://doi.org/10.1016/j.foodres.2021.110744

Zielinska, M. y Michalska, A. (2016). Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry, 212, 671–680. doi: 10.1016/j.foodchem.2016.06.003

Published

2023-11-24 — Updated on 2023-11-24

How to Cite

Luisetti, J., Balzarini, M. F., Reinheimer, M. A., Stoppani, F., & Ciappini, M. C. (2023). Influence of convective drying process on the content of anthocyanins, total phenolic compounds, antimicrobial and antioxidant capacity in strawberries (Fragaria annanasa var. San Andrea). Technology and Science Magazine, (48), 56–72. https://doi.org/10.33414/rtyc.48.56-72.2023