Demanda flexional en columnas: comparación entre INPRES-CIRSOC 103 y ACI 318 en estructuras dúctiles

Autores/as

DOI:

https://doi.org/10.33414/rtyc.54.20-36.2025

Palabras clave:

diseño por capacidad, INPRES-CIRSOC 103, ACI-318, demanda flexional, jerarquía de resistencias, estructuras sismorresistentes

Resumen

Este estudio compara la demanda flexional en columnas según las normas INPRES-CIRSOC 103 y ACI 318, evaluando su impacto en el diseño estructural sismorresistente. Mientras que el ACI 318 emplea un enfoque simplificado, el INPRES-CIRSOC 103 introduce factores como la amplificación dinámica y la reducción de momentos en columnas, permitiendo una estimación más precisa, pero con mayor complejidad computacional.
A través de un estudio paramétrico en edificios de 4, 6 y 8 niveles, se identificó que el ACI 318 puede subestimar la demanda en columnas, comprometiendo la jerarquía de resistencias. En contraste, el INPRES-CIRSOC 103 proporciona valores más elevados de ηc, mejorando la seguridad estructural.
Los resultados sugieren que la elección normativa debe equilibrar precisión y aplicabilidad, considerando el nivel de sismicidad de la región y la facilidad de implementación en el diseño estructural.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aalami, B. O. (2001) Effective Width in Post-Tensioned Flanged Beams (ADAPT Technical Note). Redwood City, CA: ADAPT Corp.

American Concrete Institute. (2019). Building code requirements for structural concrete (ACI 318-19) and commentary. American Concrete Institute.

Bertero, V. V., Aktan, A. E., Charney, F., & otros. (1984). Earthquake simulation tests and associated studies of a 1/5th scale model of a 7-story RC frame-wall test structure (Report No. UCB/EERC-84/13). Berkeley, CA: Earthquake Engineering Research Center, University of California at Berkeley.

Blume, J. A., Newmark, N. M., & Corning, L. H. (1961). Design of multistory reinforced concrete buildings for earthquake motions (318 p.). Portland Cement Association.

Bureau of Indian Standards. (2016, julio). IS 13920: Ductile design and detailing of reinforced concrete structures subjected to seismic forces – Code of practice (IS 13920:2016; reafirmado en 2021) [Norma nacional india]. Nueva Delhi, India.

Chen, X. B. (2010). The effect of floor slab and infill walls on the seismic behavior of reinforced concrete frames (Master’s thesis). Fuzhou University, Fuzhou, China.

Durrani, A. A., & Zerbe, H. (1987). Seismic resistance of RC exterior connections with floor slab. Journal of Structural Engineering, 113(8), 1850–1864.

European Committee for Standardization. (2004). Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings (EN 1992-1-1:2004) [European standard]. Brussels, Belgium: CEN.

European Committee for Standardization. (2004). Eurocode 8: Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules for buildings (EN 1998-1:2004) [European standard]. Brussels, Belgium: CEN.

Fardis, M. N. (2018). Capacity design: Early history. Earthquake Engineering & Structural Dynamics, 47(14), 2887–2896. https://doi.org/10.1002/eqe.3110

Fenwick, R., Dely, R., & Davidson, B. (1999). Ductility demand for unidirectional reversing plastic hinges in ductile moment resisting frames. Bulletin of the New Zealand Society for Earthquake Engineering, 32(1), 1–12.

French, C. W., & Moehle, J. P. (1991). Effect of floor slab on behavior of slab–beam–column connections: Design of beam–column joints for seismic resistance. ACI Structural Journal, 88(6), 650–665.

Guan, M. S., & Du, H. B. (2005). Pushover analysis of effect of casting slab on RC frame structure. Earthquake Engineering and Engineering Vibration, 5(5), 117–123. https://doi.org/10.1007/s11803-005-0043-0

Gunasekaran, U., & Ahmed, S. M. (2014). Experimental investigation into the seismic performance of slabs in RC frame joints. Magazine of Concrete Research, 66(15), 770–788. https://doi.org/10.1680/macr.14.00076

Guo, L. (2012). Research on RC structures with cast-in-place slab (Master’s thesis). Beijing University of Technology, Beijing, China.

Huang, S. Y., Lou, W. J., Sun, B. B., & otros. (2001). Space prestressed slab system analysis and effective flange width. Journal of Building Structures, 31(2), 140–193.

Instituto Nacional de Normalización. (1996). Norma Chilena Oficial NCh433.Of96: Diseño sísmico de edificios (modificación 2009) [Norma técnica]. Santiago, Chile: INN.

Instituto Nacional de Prevención Sísmica (INPRES). (2021). Reglamento Argentino para Construcciones Sismorresistentes. Proyecto de estructuras de hormigón armado – Parte II: Requisitos específicos para edificios. Secretaría de Obras Públicas, Ministerio de Obras Públicas de la Nación.

Jiang, Y. S., Chen, Z. F., Zhou, X. P., & otros. (1994). Seismic studies of frame joints with cast-in-place slab. Journal of Building Structures, 15(6), 11–16. (In Chinese).

Liu, G. M. (2004). Seismic assessment of RC frame structure based on new design codes. Journal of Chongqing Jianzhu University, 26(1), 40–49.

Ministerio de Desarrollo Urbano y Vivienda [MIDUVI]. (2015). Norma Ecuatoriana de la Construcción NECSEHM: Estructuras de hormigón armado (Edición 2015) [Norma técnica]. Quito, Ecuador.

Ministry of Housing and Urban-Rural Development of the People’s Republic of China. (2010). Code for seismic design of buildings (GB 50011-2010; revised 2016) [Chinese national standard]. Beijing, China: China Architecture & Building Press.

Nie, X., Zhang, S., Jiang, T., & Yu, T. (2020). The strong column–weak beam design philosophy in reinforced concrete frame structures: A literature review. Advances in Structural Engineering, 23(12), 2510–2534. https://doi.org/10.1177/1369433220933463

Ning, N., Qu, W., & Ma, Z. (2016). Design recommendations for achieving “strong column–weak beam” in RC frames. Engineering Structures, 126, 343–352. https://doi.org/10.1016/j.engstruct.2016.07.053

Priestley, M. J. N., Paulay, T., & Priestley, G. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley & Sons.

Qi, X. (1986). The behavior of a R/C slabbeamcolumn subassemblage under lateral load reversals (Technical report). Department of Civil Engineering, University of California, Berkeley, Berkeley, CA.

Standards New Zealand. (2006). Concrete structures standard. Part 1: The design of concrete structures & Part 2: Commentary (NZS 3101.1 & 2:2006, A1–A3 [A3 válida desde el 30 de agosto de 2017]). Wellington, Nueva Zelanda: Standards New Zealand.

Sun, Y. (2010). The effect of slabs on strong column-weak beam mechanism of RC frame structures (Master’s thesis). Harbin Institute of Technology, Harbin, China. (In Chinese).

Suzuki, N., Halim, J. K., Otani, S., & otros. (1984). Behavior of reinforced concrete beamcolumn subassemblages with and without slab (Technical report). Tokyo, Japón: Departamento de Arquitectura, Facultad de Ingeniería, Universidad de Tokio.

Wei, F., Fu, J. P., & Bai, S. L. (2007). Actual control effect of strong-column and weak-beam measures of reinforced concrete frame structures in China. Building Structure, 37(8), 5–9.

Yang, Z. L. (2010). Research on “strong column weak beam” yield mechanism factors of reinforced concrete frame structure (Master’s thesis). Qingdao Technological University, Qingdao, China.

Ye, L. P., Qu, Z., Ma, Q. L., & otros. (2008). Study on ensuring the strong column–weak beam mechanism for RC frames based on the damage analysis in the Wenchuan earthquake. Building Structure, 38(11), 52–67.

Descargas

Publicado

29-09-2025

Cómo citar

Bay, C. O., Palazzo, G., & Bassotti, R. (2025). Demanda flexional en columnas: comparación entre INPRES-CIRSOC 103 y ACI 318 en estructuras dúctiles. Revista Tecnología Y Ciencia, (54), 20–36. https://doi.org/10.33414/rtyc.54.20-36.2025