Aminoácidos como inhibidores de corrosión del acero al carbono en medio ácido

Autores/as

  • Christian Byrne Centro de Investigación y Desarrollo en Tecnología de Pinturas y Recubrimientos (CIDEPINT), Argentina. https://orcid.org/0000-0003-0813-9157
  • Santino Mariano Toro Universidad Nacional de La Plata, Argentina.
  • Nicole Rocío Uviedo Barone Instituto Superior de Formación Técnica N°202, Berisso, Argentina. https://orcid.org/0009-0008-8600-7989
  • Oriana D’Alessandro Centro de Investigación y Desarrollo en Tecnología de Pinturas y Recubrimientos (CIDEPINT), Argentina. https://orcid.org/0000-0001-7096-5527

DOI:

https://doi.org/10.33414/rtyc.54.80-92.2025

Palabras clave:

acero SAE 1010, triptófano, ácido glutámico, ácido aspártico, fenilalanina

Resumen

La corrosión del acero en medio ácido representa un desafío en diversas industrias como las de gas y petróleo. En este estudio, se investigó el potencial de los aminoácidos triptófano (TRP), ácido glutámico (GLU), ácido aspártico (ASP) y fenilalanina (PHE) como inhibidores de corrosión para el acero SAE 1010 en una solución de HCl 0,1 M. Se realizaron ensayos electroquímicos, incluyendo resistencia a la polarización lineal, potencial a circuito abierto y curvas de polarización potenciodinámica (Tafel), así como análisis de la superficie mediante microscopía electrónica de barrido (SEM) y espectroscopia de rayos X de energía dispersiva (EDS). Los resultados revelaron que TRP, GLU y ASP mostraron propiedades inhibidoras, con TRP presentando una eficiencia de inhibición del 72% a una concentración de 1000 ppm. En contraste, PHE no mostró un efecto inhibidor significativo. El análisis SEM-EDS confirmó que TRP formó una película protectora más efectiva sobre la superficie del acero.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alagbe, M., Umoru, L., Afonja, A., & Olorunniwo, O. E. (2009). Investigation of the effect of different amino‐acid derivatives on the inhibition of NST‐44 carbon steel corrosion in cassava fluid. Anti-Corrosion Methods and Materials, 56(1), 43-50. https://doi.org/10.1108/00035590910923455

Aouniti, A., Khaled, K. F., & Hammouti, B. (2013). Correlation Between Inhibition Efficiency and Chemical Structure of Some Amino Acids on the Corrosion of Armco Iron in Molar HCl. International Journal of Electrochemical Science, 8, 5925-5943. https://doi.org/10.1016/S1452-3981(23)14731-6

Askari, M., Aliofkhazraei, M., & Afroukhteh, Sahar. (2019). A comprehensive review on internal corrosion and cracking of oil and gas pipelines. Journal of Natural Gas Science and Engineering, 71, 102971. https://doi.org/10.1016/j.jngse.2019.102971

Byrne, C., Ramírez, M., Di Santo, E., Cristiano, N., Deyá, C., & D’Alessandro, O. (2021). Estudio de las propiedades anticorrosivas sobre acero SAE 1010 de extractos acuosos de romero (Rosmarinus officinalis), laurel (Laurus nobilis) y falso incienso (Plectranthus coleoides). Revista Materia, 26, 1-11. https://doi.org/10.1590/S1517-707620210003.13052

Cinitha, A., Umesha, P. K., & Iyer Nagesh R. (2014). An Overview of Corrosion and Experimental Studies on Corroded Mild Steel Compression Members. Journal of Civil Engineering, 18(6), 1735-1744. https://doi.org/10.1007/s12205-014-0362-0

D’Alessandro, O., Selmi, G., Byrne, C., Deyá, C., & Romagnoli R. (2018a). Tanino de Tara como precursor de un inhibidor de corrosión para acero SAE 1010. Revista de Ciencia y Tecnología, 30, 36-41. https://www.fceqyn.unam.edu.ar/recyt/index.php/recyt/article/view/11

D’Alessandro, O., Selmi, G., Byrne, C., Deyá, C., & Romagnoli, R. (2018b). Tanino de Quebracho colorado chaqueño (Schinopsis balansae) como precursor de un inhibidor de corrosión para acero de bajo contenido de carbono. Quebracho-Revista de Ciencias Forestales, 26, 31-39. https://www.redalyc.org/articulo.oa?id=48160748004

da Silva Moura, M., Bastos Vasques, R., Magalhães, S., Almeida Neto, F., de Lima Neto, P., dos Santos, L., Cerra Florez, M., Fargas Ribas, G., Santos Medeiros, S., Soares Salomão, F., Bedê Barros, E., & Silva Araújo, W. (2024). Assessment of the Amino Acid L-Histidine as a Corrosion Inhibitor for a 1018 Carbon Steel in Aqueous Sodium Chloride Solution. Crystals, 14(8), 703. https://doi.org/10.3390/cryst14080703

Dewangan, Y., Berdimurodov, E., & Verma, D. K. (2023). Chapter 1 - Amino acids: Classification, synthesis methods, reactions, and determination. En: C. Verma; D. K. Verma (Eds.), Handbook of Biomolecules (pp. 3-23). Elsevier. https://doi.org/10.1016/B978-0-323-91684-4.00015-3.

Eddy, N. O. (2011). Experimental and theoretical studies on some amino acids and their potential activity as inhibitors for the corrosion of mild steel, part 2. Journal of Advanced Research, 2(1), 35-47. https://doi.org/10.1016/j.jare.2010.08.005.

El Ibrahimi, B., Jmiai A., Bazzi, L., & El Issami, S. (2020). Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arabian Journal of Chemistry, 13(1), 740-771. https://doi.org/10.1016/j.arabjc.2017.07.013

Fontana, M. G. (1986). Corrosion engineering (3rd ed). McGraw-Hill, New York.

Fu, J., Li, S., Cao, I., Wang, Y., Yan, I., Lu, L. (2010). L-tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution. Journal of Materials Science, 45, 979–986. https://doi.org/10.1007/s10853-009-4028-0

Guo, L., Ye, G., Bassey Obot, I., Li, X., Shen, X., Shi, W., & Zheng, X. (2017). Synergistic Effect of Potassium Iodide with L-Tryptophan on the Corrosion Inhibition of Mild Steel: A Combined Electrochemical and Theoretical Study. International Journal of Electrochemical Science, 12(1), 166-177. https://doi.org/10.20964/2017.01.04

Hamadi, L., Mansouri, S., Oulmi, K., & Kareche, A. (2018). The use of amino acids as corrosion inhibitors for metals: A review. Egyptian Journal of Petroleum, 27(4), 1157-1165. https://doi.org/10.1016/j.ejpe.2018.04.004

Hluchan, V., Wheeler B. L., & Hackerman N. (1988). Amino acids as corrosion inhibitors in hydrochloric acid solutions. Materials and corrosion, 39(11), 512-517. https://doi.org/10.1002/maco.19880391106

Huong, D. Q., Lan Huong, N. T., Anh Nguyet, T. T., Duong, T., Tuan, D., Thong, N. M., & Nam, P. C. (2020). Pivotal Role of Heteroatoms in Improving the Corrosion Inhibition Ability of Thiourea Derivatives. ACS omega, 5(42), 27655–27666. https://doi.org/10.1021/acsomega.0c04241

Kasprzhitskii, A., Lazorenko, G., Nazdracheva, T., & Yavna, V. (2021). Comparative Computational Study of L-Amino Acids as Green Corrosion Inhibitors for Mild Steel. Computation, 9(1), 1. https://doi.org/10.3390/computation9010001

McCafferty, E. (2005). Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science, 47(12), 3202-3215. https://doi.org/10.1016/j.corsci.2005.05.046

Mobin, M., Parveen, M., & Khan, M. A. (2011). Inhibition of Mild Steel Corrosion Using L-tryptophan and Synergistic Surfactant Additives. Port. Electrochim. Acta, 29(6), 391-403. https://doi.org/10.4152/pea.201106391

Oguzie, E. E., Li, Y., Wang, S. G., & Wang, F. (2011). Understanding corrosion inhibition mechanisms—Experimental and theoretical approach. RSC Advances, 1(5), 866. https://doi.org/10.1039/c1ra00148e

Olivares, O., Likhanova, N.V., Gómez, B., Navarrete, J., Llanos-Serrano, M., Arce, E., & Hallen, J. (2006). Electrochemical and XPS studies of decyl amides of α-amino acids adsorption on carbon steel in acidic environment. Applied Surface Science, 252(8), 2894-2909. https://doi.org/10.1016/j.apsusc.2005.04.040

Popoola, L. T. (2019). Organic green corrosion inhibitors (OGCIs): a critical review. Corrosion Reviews, 37(2), 71-102. https://doi.org/10.1515/corrrev-2018-0058

Pour-Ali, S., Tavangar, R., & Hejazi, S. (2023). Comprehensive assessment of some l-amino acids as eco-friendly corrosion inhibitors for mild steel in HCl: Insights from experimental and theoretical studies. Journal of Physics and Chemistry of Solids, 181, 111550. https://doi.org/10.1016/j.jpcs.2023.111550

Radovanović, M., Petrović Mihajlović, M., Tasić, Ž., Simonović, A., & Antonijević, M. (2021). Inhibitory effect of L-Threonine and L-Lysine and influence of surfactant on stainless steel corrosion in artificial body solution. Journal of Molecular Liquids, 342, 116939. https://doi.org/10.1016/j.molliq.2021.116939

Roscher, J., Liu, D., Xie, X., & Holze, R. (2024). Aromatic Metal Corrosion Inhibitors. Corrosion and Materials Degradation, 5(4), 513-560. https://doi.org/10.3390/cmd5040024

Singh, A., & Ebenso, E. E. (2013). Use of Glutamine as a New and Effective Corrosion Inhibitor for Mild Steel in 1 M HCl Solution. Int. J. Electrochem. Sci., 8(12), 12874-12883. https://doi.org/10.1016/S1452-3981(23)13313-X

Wasim, M., & Djukic, M. B. (2022). External corrosion of oil and gas pipelines: A review of failure mechanisms and predictive preventions. Journal of Natural Gas Science and Engineering, 100, 104467. http://doi.org/10.1016/j.jngse.2022.104467

Yadav, M., Sarkar, T. K., & Purkait, T. (2015). Amino acid compounds as eco-friendly corrosion inhibitor for N80 steel in HCl solution: Electrochemical and theoretical approaches. Journal of Molecular Liquids, 212, 731-738. http://dx.doi.org/10.1016/j.molliq.2015.10.021

Zerfaoui, M., Oudda, H., Hammouti, B., Kertit, S., & Benkaddour, M. (2004). Inhibition of corrosion of iron in citric acid media by aminoacids, Prog. Org. Coat., 51(2), 134-138. https://doi.org/10.1016/j.porgcoat.2004.05.005

Zhang, H., & Lan, H. (2017). A review of internal corrosion mechanism and experimental study for pipelines based on multiphase flow. Corrosion Reviews, 35(6), 425-444. https://doi.org/10.1515/corrrev-2017-0064

Descargas

Publicado

13-10-2025

Cómo citar

Byrne, C., Toro, S. M., Uviedo Barone , N. R. ., & D’Alessandro, O. (2025). Aminoácidos como inhibidores de corrosión del acero al carbono en medio ácido. Revista Tecnología Y Ciencia, (54), 80–92. https://doi.org/10.33414/rtyc.54.80-92.2025