Estudio DFT+U de las propiedades estructurales y electrónicas del La₀.₁₂Sr₀.₈₈TiO₃: implicaciones para las celdas de combustible de óxido solido

Autores/as

  • Victor Ernesto Tagarelli Gaete Departamento Caracterización de Materiales-Gerencia de Investigación Aplicada-Instituto de Nanociencias y Nanomateriales, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Argentina. / Universidad Tecnológica Nacional, Facultad Regional La Plata, Argentina.
  • Jesús Vega-Castillo Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. / YPF-Tecnología, Argentina.
  • Mariela Ortiz Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas Universidad Nacional de la Plata, CONICET, Argentina. / Universidad Tecnológica Nacional, Facultad Regional La Plata, Centro de Investigación y Desarrollo en Ciencia y Tecnología de Materiales, Argentina.
  • Alejandra Montenegro-Hernandez Departamento Caracterización de Materiales - Gerencia de Investigación Aplicada - Instituto de Nanociencias y Nanomateriales, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Argentina. / Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. https://orcid.org/0000-0002-0816-278X

DOI:

https://doi.org/10.33414/rtyc.53.95-108.2025

Palabras clave:

SOFC, Ánodo, DFT, Bader, Vacancias

Resumen

Este trabajo presenta un estudio comparativo de las propiedades estructurales y la estructura electrónica de la perovskita SrTiO3 (STO) y su variante dopada con lantano, La0,12Sr0,88TiO3 (LST-12), utilizando cálculos por primeros principios basados en la teoría del funcional de la densidad (DFT). En el compuesto LST-12, se realizó un análisis detallado de la estructura electrónica utilizando una configuración con polarización de espín. Además, se examinó la distribución de carga asociada a cada ion mediante un análisis de carga de Bader. Finalmente, se introdujo una vacancia de oxígeno en una supercelda 4×2×2 de La0.125Sr0.875TiO3-δ para evaluar su impacto en las propiedades del material.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adewale, A. A., Chik, A., & Zaki, R. M. (2020). Structural, electronic and thermoelectric properties of SrTiO3 ceramic doped by lanthanum using first principles. IOP Conference Series: Materials Science and Engineering, 957(1), 0–10. https://doi.org/10.1088/1757-899X/957/1/012008

Birch, F. (1947). Finite elastic strain of cubic crystals. Physical Review, 71(11), 809–824. https://doi.org/10.1103/PhysRev.71.809

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

Brown, J. J., Ke, Z., Geng, W., & Page, A. J. (2018). Oxygen Vacancy Defect Migration in Titanate Perovskite Surfaces: Effect of the A-Site Cations. Journal of Physical Chemistry C, 122(26), 14590–14597. https://doi.org/10.1021/acs.jpcc.8b03322

Burnat, D., Heel, A., Holzer, L., Kata, D., Lis, J., & Graule, T. (2012). Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis. Journal of Power Sources, 201, 26–36. https://doi.org/10.1016/j.jpowsour.2011.10.088

Burnat, D., Heel, A., Holzer, L., Otal, E., Kata, D., & Graule, T. (2012). On the chemical interaction of nanoscale lanthanum doped strontium titanates with common scandium and yttrium stabilized electrolyte materials. International Journal of Hydrogen Energy, 37(23), 18326–18341. https://doi.org/10.1016/j.ijhydene.2012.09.022

Carballo-Córdova, D. A., Ochoa-Lara, M. T., Olive-Méndez, S. F., & Espinosa-Magaña, F. (2019). First-principles calculations and Bader analysis of oxygen-deficient induced magnetism in cubic BaTiO3−x and SrTiO3−x. Philosophical Magazine, 99(2), 181–197. https://doi.org/10.1080/14786435.2018.1535722

Cheng, J., Gong, J., Yue, S., Jiang, Y., Hou, X., Ma, J., Yao, Y., & Jiang, C. (2021). Electrochemical investigation of La0.4Sr0.6TiO3 synthesized in air for SOFC application. Journal of Applied Electrochemistry, 51(8), 1175–1188. https://doi.org/10.1007/s10800-021-01568-8

Choi, M., Posadas, A. B., Rodriguez, C. A., O’Hara, A., Seinige, H., Kellock, A. J., Frank, M. M., Tsoi, M., Zollner, S., Narayanan, V., & Demkov, A. A. (2014). Structural, optical, and electrical properties of strained La-doped SrTiO3 films. Journal of Applied Physics, 116(4). https://doi.org/10.1063/1.4891225

Deshmukh V., Nagaswarupa H., Ravikumar C., Anil Kumar M., Shashi Shekhar T., A. M. H. (2020). Lanthanum doped strontium titanate nanomaterial for photocatalytic and supercapacitor applications. Asian Journal of Chemistry, 32(8), 2013–2020.

Duan, Y., Ohodnicki, P., Chorpening, B., & Hackett, G. (2017). Electronic structural, optical and phonon lattice dynamical properties of pure- and La-doped SrTiO3: An ab initio thermodynamics study. Journal of Solid State Chemistry, 256(August), 239–251. https://doi.org/10.1016/j.jssc.2017.09.016

Fagg, D. P., Kharton, V. V., Kovalevsky, A. V., Viskup, A. P., Naumovich, E. N., & Frade, J. R. (2001). The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. Journal of the European Ceramic Society, 21(10–11), 1831–1835. https://doi.org/10.1016/S0955-2219(01)00125-X

Fan, W., Song, Y., Bi, J., Pei, Y., Zhang, R., & Cao, Y. (2019). Evolution of element-specific electronic structures in alkaline titanates. AIP Advances, 9(6), 1–6. https://doi.org/10.1063/1.5109588

Ha, M.-A., & Alexandrova, A. N. (2016). Oxygen Vacancies of Anatase(101): Extreme Sensitivity to the Density Functional Theory Method. Journal of Chemical Theory and Computation, 12(6), 2889–2895. https://doi.org/10.1021/acs.jctc.6b00095

Hashimoto, S., Kindermann, L., Poulsen, F. W., & Mogensen, M. (2005). A study on the structural and electrical properties of lanthanum-doped strontium titanate prepared in air. Journal of Alloys and Compounds, 397(1–2), 245–249. https://doi.org/10.1016/j.jallcom.2004.11.066

Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

Howard, S. A., Yau, J. K., & Anderson, H. U. (1989). Structural characteristics of Sr1-xLaxTi 3+δ as a function of oxygen partial pressure at 1400°C. Journal of Applied Physics, 65(4), 1492–1498. https://doi.org/10.1063/1.342963

Johnston, K., Castell, M. R., Paxton, A. T., & Finnis, M. W. (2004). SrTiO3(001)(2×1) reconstructions: First-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images. Physical Review B - Condensed Matter and Materials Physics, 70(8), 1–12. https://doi.org/10.1103/PhysRevB.70.085415

Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Physical Review B, 47(1), 558–561. https://doi.org/10.1103/PhysRevB.47.558

Le, M., Vo, N., Le, Q., Tran, V. A., & Phan, T. Q. (2021). Sr 1 − x La x TiO 3 Nanocubes toward the Photodegradation of 2-Naphthol under Artificial Solar Light.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

Piskunov, S., Heifets, E., Eglitis, R. I., & Borstel, G. (2004). Bulk properties and electronic structure of SrTiO3, BaTiO 3, PbTiO3 perovskites: An ab initio HF/DFT study. Computational Materials Science, 29(2), 165–178. https://doi.org/10.1016/j.commatsci.2003.08.036

Piskunov, S., Kotomin, E. A., Heifets, E., Maier, J., Eglitis, R. I., & Borstel, G. (2005). Hybrid DFT calculations of the atomic and electronic structure for ABO 3 perovskite (0 0 1) surfaces. Surface Science, 575(1–2), 75–88. https://doi.org/10.1016/j.susc.2004.11.008

Presto, S., Barbucci, A., Carpanese, M., Han, F., Costa, R., & Viviani, M. (2018). Application of La-Doped SrTiO3 in Advanced Metal-Supported Solid Oxide Fuel Cells. Crystals, 8(3), 134. https://doi.org/10.3390/cryst8030134

Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid‐based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28(5), 899–908. https://doi.org/10.1002/jcc.20575

Savaniu, C. D., & Irvine, J. T. S. (2011). La-doped SrTiO3 as anode material for IT-SOFC. Solid State Ionics, 192(1), 491–493. https://doi.org/10.1016/j.ssi.2010.02.010

Sharma, U., Pawar, V., & Singh, P. (2024). Charge particle dynamics and electrochemical behaviour of SrTiO3-δ as anode material for IT-SOFC applications. International Journal of Hydrogen Energy, 52, 1278–1289. https://doi.org/10.1016/j.ijhydene.2023.11.007

Shein, I. R., Shein, K. I., Kozhevnikov, V. L., & Ivanovskiǐ, A. L. (2005). Band structure and the magnetic and elastic properties of SrFeO3 and LaFeO3 perovskites. Physics of the Solid State, 47(11), 2082–2088. https://doi.org/10.1134/1.2131149

Souto-Casares, J., Spaldin, N. A., & Ederer, C. (2021). Oxygen vacancies in strontium titanate: A DF +DMFT study. Physical Review Research, 3(2), 023027. https://doi.org/10.1103/PhysRevResearch.3.023027

Su, H. Y., & Sun, K. (2015). DFT study of the stability of oxygen vacancy in cubic ABO3 perovskites. Journal of Materials Science, 50(4), 1701–1709. https://doi.org/10.1007/s10853-014-8731-0

Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21(8), 084204. https://doi.org/10.1088/0953-8984/21/8/084204

Van Benthem, K., Elsässer, C., & French, R. H. (2001). Bulk electronic structure of SrTiO3: Experiment and theory. Journal of Applied Physics, 90(12), 6156–6164. https://doi.org/10.1063/1.1415766

Winczewski, S., Dziedzic, J., Miruszewski, T., Rybicki, J., & Gazda, M. (2022). Properties of Oxygen Vacancy and Hydrogen Interstitial Defects in Strontium Titanate: DFT + Ud,pCalculations. Journal of Physical Chemistry C, 126(43), 18439–18465. https://doi.org/10.1021/acs.jpcc.2c04681

Yurkiv, V., Constantin, G., Hornes, A., Gondolini, A., Mercadelli, E., Sanson, A., Dessemond, L., & Costa, R. (2015). Towards understanding surface chemistry and electrochemistry of La0.1Sr0.9TiO3-α based solid oxide fuel cell anodes. Journal of Power Sources, 287, 58–67. https://doi.org/10.1016/j.jpowsour.2015.04.039

Zhang, L., Liu, B., Zhuang, H., Kent, P. R. C., Cooper, V. R., Ganesh, P., & Xu, H. (2016). Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations. Computational Materials Science, 118, 309–315. https://doi.org/10.1016/j.commatsci.2016.02.041

Zhang, S. L., Li, C. X., & Li, C. J. (2014). Chemical compatibility and properties of suspension plasma-sprayed SrTiO3-based anodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 264, 195–205. https://doi.org/10.1016/j.jpowsour.2014.04.094

Publicado

14-08-2025

Cómo citar

Tagarelli Gaete, V. E., Vega-Castillo, J., Ortiz, M., & Montenegro-Hernandez, A. (2025). Estudio DFT+U de las propiedades estructurales y electrónicas del La₀.₁₂Sr₀.₈₈TiO₃: implicaciones para las celdas de combustible de óxido solido. Revista Tecnología Y Ciencia, (53), 95–108. https://doi.org/10.33414/rtyc.53.95-108.2025