Tratamento de efluentes contaminados com glifosato com base no desenvolvimento de SBA-15 impregnado com Fe como catalisador avançado para o processo de oxidação úmida em condições ambientais.
DOI:
https://doi.org/10.33414/rtyc.42.55-67.2021Palavras-chave:
Tratamento de água poluída, Glifosato, Nanomateriais, Teor de FeResumo
Sólidos nanoestruturados impregnados com diferentes teores de ferro (1, 2,5, 5 e 10% p / p) foram desenvolvidos como catalisadores eficazes para degradar soluções aquosas de glifosato em condições de reação extremamente suaves: pressão atmosférica e temperatura ambiente. Esses materiais foram caracterizados por XRD, fissão de N2, UVvis-DR e XPS. Estruturas mesoporosas regulares típicas dos sólidos SBA-15 foram obtidas e a especiação de Fe pode ser ajustada variando a carga nominal do metal. Os catalisadores foram avaliados na reação de degradação-fragmentação do glifosato por oxidação catalítica úmida com ar, atingindo níveis de degradação do herbicida na ordem de 80%. Um caminho de reação foi proposto com base na formação de um intermediário oxo-ferro (V) altamente reativo do complexo Fe-glifosato. Desta forma, apresenta-se uma tecnologia interessante com menor impacto ambiental e maior sustentabilidade para a remediação de água contaminada com glifosato.
Downloads
Referências
Dubois, A. y Lacouture, L. (2011). “Bilan de présence des micropolluants dans les milieux aquatiques continentaux. Période 2007–2009”. Commissariat général au développement durable, 54, (2011). https://side.developpement-durable.gouv.fr/Default/doc/SYRACUSE/213231
Barja, B., Herszage, J. y dos Santos Afonso, M. (2001). “Iron (lll)-phosphonate complexes”. Polyhedron, 20, (15-16), 1821-1830.
Robert, D. y Malato, S. (2002). “Solar photocatalysis: a clean process for water detoxification”. Science of the Total Environment, 291, (1-3), 85-97.
Kyoung-Hun, K. y Son-Ki, I. (2011). “Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review”. Journal of Hazardous Materials, 186, (1), 16-34.
Elías, V., Ochoa Rodriguez, P., Vaschetto, E., Pecchi, G., Huck-Iriart, C., Casuscelli, S. y Eimer, G. (2020). “Tailoring the stability and photo-Fenton activity of Fe-modified nanostructured silicates by tuning the metal speciation from different synthesis conditions”. Molecular Catalysis, 481, 110217.
Elías, V., Sabre, E., Sapag, K., Casuscelli, S. y Eimer, G. (2012). “Influence of the Cr loading in Cr/MCM-41 and TiO2/Cr/MCM-41 molecular sieves for the photodegradation Acid Orange 7”. Applied Catalysis A: General, 413, 280–291.
Patterson, A. (1939). “The Scherrer Formula for X-Ray particle size determination”. Physical Review Journals Archive, 56, (10), 978–982.
Greenberg, A., Clesceri, L. y Eaton, A. American public health association, American Water Works Association, Water Pollution Control Federation (1992). Standard methods for the examination of water and wastewater. Washington, DC: Joint Editorial Board.
Neyens, E. y Baeyens, J. (2003). “A review of classic Fenton’s peroxidation as an advanced oxidation technique”. Journal of Hazardous Materials, 98, (1-3), 33–50.
Do, Y., Kim, J., Park, J., Park, S., Hong, S., Suh, C. y Lee, G. (2005). “Photocatalytic decomposition of 4-nitrophenol on Ti-containing MCM-41”. Catalysis Today, 101, 299–305.
Bing Sun, L., Hui Kou, J., Chun, Y., Yang, J., Na Gu, F., Wang, Y., Hua Zhu, J., Gang Zou, Z. (2008). New Attempt at Directly Generating Superbasicity on Mesoporous Silica SBA-15”. Inorganic Chemistry, 47,4199-4208.
Joint Committee on Powder Diffraction Standars (1972). “Joint Committee on Powder Diffraction Standards 330664”. Analytical Chemistry, 44, 12, 75A.
Balu, A., Pineda, A., Yoshida, K., Campelo, J., Gai, P., Luque, R. y Romero, A. (2010). “Sinergia Fe/Al en nanopartículas de Fe2O3 soportadas sobre materiales de aluminosilicato porosos: Excelentes actividades en reacciones de oxidación”. Chemical Communication, 46, 7825–7827.
Feng, J., Hu, X. y Yue, P. (2004). “Discoloration and Mineralization of Orange II Using Different Heterogeneous Catalysts Containing Fe: A Comparative Study”. Environmental Science & Technology, 38, 5773–5778.
Hosseini, S., Ahmadi, R., Ghavi, A. y Kashi, A. (2015) “Synthesis and characterization of α-Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles”. Powder Technology, 278, 316–322.
Elías, V., Vaschetto, E., Sapag, K., Oliva, M., Casuscelli, S. y Eimer, G. (2011). “MCM-41 based materials for the photo-catalytic degradation on Acid Orange 7”. Catalysis Today,172, (1), 58-65.
Cuello, N., Elías, V., Crivello, M., Torres, C., Oliva, M. y Eimer, G. (2015). “Development of iron modified MCM-41 as promising nano-composites with specific magnetic behavior”. Microporous and Mesoporous Materials, 203, 106-115.
Caetano, M., Ramalho, T., Botrel, D., Da Cunha, E. y Carvalho de Mello, W. (2012). “Understanding the inactivation process of organophosphorus herbicides: a DFT study of glyphosate metallic complexes with Zn+2, Ca+2, Mg+2, Cu+2, Co+3, Fe+3, Cr+3 and Al+3”. International Journal of Quantum Chemistry, 112, (15), 2752-2762.
Coutinho, C. y Mazo, L. (2005). “Complexos Metálicos com o Herbicida Glifosato: Revisão”. Química Nova, 28, (6), 1038-1045.
Harris, W., Sammons, R., Grabiak, R., Mehrsheikh, A. y Bleeke, M. (2012). “Computer Simulation of the Interactions of Glyphosate with Metal Ions in Phloem”. Journal of Agricultural and Food Chemistry, 60, (24), 6077−6087.
Subramaniam, V. y Hoggard, P. (1988). “Metal complexes of glyphosate”. Journal of Agricultural and Food Chemistry, 36, (6), 1326-1329.
Li, H. (2018) “Degradation of glyphosate by Mn-oxides: mechanisms, pathways, and source tracking”, Doctoral Dissertation. University of Delaware, United States.
Sheals, J., Sjöberg, S. y Persson, P. (2002). “Adsorption of Glyphosate on Goethite: Molecular Characterization of Surface Complexes”. Environmental Science & Technology, 36, (14), 3090–3095.
Waiman, C. V., Avena, M. J., Regazzoni, A. E. y Zanini, G. P. (2013). “A real time in situ ATR-FTIR spectroscopic study of glyphosate desorption from goethite as induced by phosphate adsorption: effect of surface coverage”. Journal of Colloid and Interface Science, 394, 485–489.
Sheldon, R. A. y Kochi, J. K. (1981a). Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes. London: Academic Press.
Sheldon, R. A. y Kochi, J. K. (1981b). Metal-Catalyzed Oxidations of Organic Compounds in the Liquid Phase: A Mechanistic Approach. London: Academic Press.
Cavani, F. y Trifiro, F. (1997). “Classification of industrial catalysts and catalysis for the petrochemical industry”. Catalysis Today, 34, (3-4), 269-279.
Guo, J. y Al-Dahhan, M. (2003). “Kinetics of wet air oxidation of phenol over a novel catalyst”. Industrial & Engineering Chemistry Research, 42, (22), 5473-5481.
Vaschetto, E., Sicardi, M., Elías, V., Ferrero, G., Carraro, P., Casuscelli, S. y Eimer, G. (2019). “Metal modified silica for catalytic wet air oxidation (CWAO) of glyphosate under atmospheric conditions”. Adsorption, 1-8.
Elías, V., Benzaquén, T., Ochoa Rodríguez, P., Cuello, N., Tolley, A. y Eimer, G. (2020). “Elucidating Iron Speciation Tuned by Handling Metal Precursor for more Efficient Designing of Nanostructured Fenton Catalysts”. Catalysis Letters, 150, 196–208.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Eliana Gabriela Vaschetto, Candelaria Gómez, Pablo Ochoa Rodríguez, Sandra Casuscelli, Verónica Elías, Griselda Eimer
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.