Tratamiento de Aguas Residuales Contaminadas con Glifosato basado en el desarrollo de SBA-15 impregnados con Fe como catalizadores avanzados para el proceso de oxidación húmeda en condiciones ambientales.

Autores/as

  • Eliana Gabriela Vaschetto Centro de Investigación y Tecnología Química, Universidad Tecnológica Nacional, Consejo Nacional de Investigaciones Científicas y Técnicas – Argentina.
  • Candelaria Gómez Centro de Investigación y Tecnología Química, Universidad Tecnológica Nacional, Consejo Nacional de Investigaciones Científicas y Técnicas – Argentina.
  • Pablo Ochoa Rodríguez Centro de Investigación y Tecnología Química, Universidad Tecnológica Nacional, Consejo Nacional de Investigaciones Científicas y Técnicas – Argentina.
  • Sandra Casuscelli Centro de Investigación y Tecnología Química, Universidad Tecnológica Nacional, Consejo Nacional de Investigaciones Científicas y Técnicas – Argentina.
  • Verónica Elías Centro de Investigación y Tecnología Química, Universidad Tecnológica Nacional, Consejo Nacional de Investigaciones Científicas y Técnicas – Argentina.
  • Griselda Eimer Centro de Investigación y Tecnología Química, Universidad Tecnológica Nacional, Consejo Nacional de Investigaciones Científicas y Técnicas – Argentina.

DOI:

https://doi.org/10.33414/rtyc.42.55-67.2021

Palabras clave:

Tratamiento de aguas contaminadas, Glifosato, Nanomateriales, Contenido de Fe

Resumen

Se desarrollaron sólidos nanoestructurados impregnados con diferentes contenidos de hierro (1; 2,5; 5 y 10% p/p) como catalizadores eficaces para degradar soluciones acuosas de glifosato en condiciones de reacción extremadamente suaves: presión atmosférica y temperatura ambiente. Estos materiales se caracterizaron por XRD, fisisorción de N2, UVvis-DR y XPS. Se obtuvieron estructuras mesoporosas regulares típicas de los sólidos SBA-15 y se pudo ajustar la especiación de Fe variando la carga nominal del metal. Los catalizadores fueron evaluados en la reacción de degradación-fragmentación de glifosato mediante oxidación húmeda catalítica con aire, logrando niveles de degradación del herbicida del orden del 80%. Se propuso un camino de reacción basado en la formación de un intermediario oxo-hierro (V) altamente reactivo a partir del complejo Fe-glifosato. De esta manera, se presenta una interesante tecnología con menor impacto ambiental y mayor sustentabilidad para la remediación de aguas contaminadas con glifosato.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Dubois, A. y Lacouture, L. (2011). “Bilan de présence des micropolluants dans les milieux aquatiques continentaux. Période 2007–2009”. Commissariat général au développement durable, 54, (2011). https://side.developpement-durable.gouv.fr/Default/doc/SYRACUSE/213231

Barja, B., Herszage, J. y dos Santos Afonso, M. (2001). “Iron (lll)-phosphonate complexes”. Polyhedron, 20, (15-16), 1821-1830.

Robert, D. y Malato, S. (2002). “Solar photocatalysis: a clean process for water detoxification”. Science of the Total Environment, 291, (1-3), 85-97.

Kyoung-Hun, K. y Son-Ki, I. (2011). “Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review”. Journal of Hazardous Materials, 186, (1), 16-34.

Elías, V., Ochoa Rodriguez, P., Vaschetto, E., Pecchi, G., Huck-Iriart, C., Casuscelli, S. y Eimer, G. (2020). “Tailoring the stability and photo-Fenton activity of Fe-modified nanostructured silicates by tuning the metal speciation from different synthesis conditions”. Molecular Catalysis, 481, 110217.

Elías, V., Sabre, E., Sapag, K., Casuscelli, S. y Eimer, G. (2012). “Influence of the Cr loading in Cr/MCM-41 and TiO2/Cr/MCM-41 molecular sieves for the photodegradation Acid Orange 7”. Applied Catalysis A: General, 413, 280–291.

Patterson, A. (1939). “The Scherrer Formula for X-Ray particle size determination”. Physical Review Journals Archive, 56, (10), 978–982.

Greenberg, A., Clesceri, L. y Eaton, A. American public health association, American Water Works Association, Water Pollution Control Federation (1992). Standard methods for the examination of water and wastewater. Washington, DC: Joint Editorial Board.

Neyens, E. y Baeyens, J. (2003). “A review of classic Fenton’s peroxidation as an advanced oxidation technique”. Journal of Hazardous Materials, 98, (1-3), 33–50.

Do, Y., Kim, J., Park, J., Park, S., Hong, S., Suh, C. y Lee, G. (2005). “Photocatalytic decomposition of 4-nitrophenol on Ti-containing MCM-41”. Catalysis Today, 101, 299–305.

Bing Sun, L., Hui Kou, J., Chun, Y., Yang, J., Na Gu, F., Wang, Y., Hua Zhu, J., Gang Zou, Z. (2008). New Attempt at Directly Generating Superbasicity on Mesoporous Silica SBA-15”. Inorganic Chemistry, 47,4199-4208.

Joint Committee on Powder Diffraction Standars (1972). “Joint Committee on Powder Diffraction Standards 330664”. Analytical Chemistry, 44, 12, 75A.

Balu, A., Pineda, A., Yoshida, K., Campelo, J., Gai, P., Luque, R. y Romero, A. (2010). “Sinergia Fe/Al en nanopartículas de Fe2O3 soportadas sobre materiales de aluminosilicato porosos: Excelentes actividades en reacciones de oxidación”. Chemical Communication, 46, 7825–7827.

Feng, J., Hu, X. y Yue, P. (2004). “Discoloration and Mineralization of Orange II Using Different Heterogeneous Catalysts Containing Fe: A Comparative Study”. Environmental Science & Technology, 38, 5773–5778.

Hosseini, S., Ahmadi, R., Ghavi, A. y Kashi, A. (2015) “Synthesis and characterization of α-Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles”. Powder Technology, 278, 316–322.

Elías, V., Vaschetto, E., Sapag, K., Oliva, M., Casuscelli, S. y Eimer, G. (2011). “MCM-41 based materials for the photo-catalytic degradation on Acid Orange 7”. Catalysis Today,172, (1), 58-65.

Cuello, N., Elías, V., Crivello, M., Torres, C., Oliva, M. y Eimer, G. (2015). “Development of iron modified MCM-41 as promising nano-composites with specific magnetic behavior”. Microporous and Mesoporous Materials, 203, 106-115.

Caetano, M., Ramalho, T., Botrel, D., Da Cunha, E. y Carvalho de Mello, W. (2012). “Understanding the inactivation process of organophosphorus herbicides: a DFT study of glyphosate metallic complexes with Zn+2, Ca+2, Mg+2, Cu+2, Co+3, Fe+3, Cr+3 and Al+3”. International Journal of Quantum Chemistry, 112, (15), 2752-2762.

Coutinho, C. y Mazo, L. (2005). “Complexos Metálicos com o Herbicida Glifosato: Revisão”. Química Nova, 28, (6), 1038-1045.

Harris, W., Sammons, R., Grabiak, R., Mehrsheikh, A. y Bleeke, M. (2012). “Computer Simulation of the Interactions of Glyphosate with Metal Ions in Phloem”. Journal of Agricultural and Food Chemistry, 60, (24), 6077−6087.

Subramaniam, V. y Hoggard, P. (1988). “Metal complexes of glyphosate”. Journal of Agricultural and Food Chemistry, 36, (6), 1326-1329.

Li, H. (2018) “Degradation of glyphosate by Mn-oxides: mechanisms, pathways, and source tracking”, Doctoral Dissertation. University of Delaware, United States.

Sheals, J., Sjöberg, S. y Persson, P. (2002). “Adsorption of Glyphosate on Goethite: Molecular Characterization of Surface Complexes”. Environmental Science & Technology, 36, (14), 3090–3095.

Waiman, C. V., Avena, M. J., Regazzoni, A. E. y Zanini, G. P. (2013). “A real time in situ ATR-FTIR spectroscopic study of glyphosate desorption from goethite as induced by phosphate adsorption: effect of surface coverage”. Journal of Colloid and Interface Science, 394, 485–489.

Sheldon, R. A. y Kochi, J. K. (1981a). Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes. London: Academic Press.

Sheldon, R. A. y Kochi, J. K. (1981b). Metal-Catalyzed Oxidations of Organic Compounds in the Liquid Phase: A Mechanistic Approach. London: Academic Press.

Cavani, F. y Trifiro, F. (1997). “Classification of industrial catalysts and catalysis for the petrochemical industry”. Catalysis Today, 34, (3-4), 269-279.

Guo, J. y Al-Dahhan, M. (2003). “Kinetics of wet air oxidation of phenol over a novel catalyst”. Industrial & Engineering Chemistry Research, 42, (22), 5473-5481.

Vaschetto, E., Sicardi, M., Elías, V., Ferrero, G., Carraro, P., Casuscelli, S. y Eimer, G. (2019). “Metal modified silica for catalytic wet air oxidation (CWAO) of glyphosate under atmospheric conditions”. Adsorption, 1-8.

Elías, V., Benzaquén, T., Ochoa Rodríguez, P., Cuello, N., Tolley, A. y Eimer, G. (2020). “Elucidating Iron Speciation Tuned by Handling Metal Precursor for more Efficient Designing of Nanostructured Fenton Catalysts”. Catalysis Letters, 150, 196–208.

Descargas

Publicado

03-09-2021

Cómo citar

Vaschetto, E. G., Gómez, C., Ochoa Rodríguez, P., Casuscelli, S., Elías, V., & Eimer, G. (2021). Tratamiento de Aguas Residuales Contaminadas con Glifosato basado en el desarrollo de SBA-15 impregnados con Fe como catalizadores avanzados para el proceso de oxidación húmeda en condiciones ambientales. Revista Tecnología Y Ciencia, (42), 55–67. https://doi.org/10.33414/rtyc.42.55-67.2021

Artículos más leídos del mismo autor/a