Nanohorns de carbono de parede única como recipientes para hidrogênio molecular

Autores

  • Eduardo Ariel Crespo Universidad Tecnológica Nacional, Facultad Regional Neuquén, Argentina. / Dpto. de Física de la Facultad de Ingeniería. Universidad Nacional del Comahue, Argentina.
  • Juan Manuel González Universidad Tecnológica Nacional, Facultad Regional Neuquén, Argentina.
  • Mirtha Azucena Orozco Universidad Tecnológica Nacional, Facultad Regional Neuquén, Argentina. / Instituto de Investigaciones en Tecnologías y Ciencias de la Ingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional del Comahue, Argentina.
  • Eduardo Marcial Bringa Facultad de Ingeniería, Universidad de Mendoza, Argentina. / Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina. / Centro de Nanotecnología Aplicada. Facultad de Ciencias. Universidad Mayor de Chile, Chile.

DOI:

https://doi.org/10.33414/rtyc.53.15-25.2025

Palavras-chave:

SWCNH, Nanoarmazenamento de H2

Resumo

Nanochifres de carbono de parede única (SWCNHs) possuem propriedades únicas com grande potencial para aplicações nanotecnológicas. Entre seus potenciais usos futuros está o armazenamento estável de hidrogênio molecular (H2) em nanoescala. A interação entre SWCNHs e H2 pode ser estudada por meio de simulações atomísticas, que não apenas oferecem resultados comparáveis ​​aos dados experimentais, mas também fornecem informações difíceis de serem obtidas por outros meios.
Em particular, a dinâmica molecular (DM) é fundamental, pois permite a análise da evolução de átomos e moléculas ao longo do tempo, fornecendo uma visão detalhada do movimento atômico e da termodinâmica do sistema. Neste trabalho, a DM com o código LAMMPS e o potencial reativo AIREBO são utilizados para examinar o comportamento de um SWCNH com um volume de aproximadamente 8 nm3, incluindo configurações com 38, 76, 152 e 304 moléculas de H2 em seu interior. A estabilidade do sistema, as estatísticas de energia e a topologia interatômica são avaliadas, além de determinar a pressão de H2 dentro dos SWCNHs em uma faixa de temperatura entre 200 K e 1000 K, encontrando uma boa concordância com resultados experimentais na fase gasosa.

Downloads

Referências

Almeida, E. R., De Souza, L. A., De Almeida, W. B., & Dos Santos, H. F. (2019). Molecular dynamics of carbon nanohorns and their complexes with cisplatin in aqueous solution. Journal of Molecular Graphics and Modelling, 89, 167-177. https://doi.org/10.1016/j.jmgm.2019.03.015

Arti, N., Alam, N., & Ansari, J. R. (2024). Nanostructures and fascinating properties of carbon nanohorns. En Handbook of Functionalized Carbon Nanostructures (pp. 351–389). Springer. https://doi.org/10.1007/978-3-031-32150-4_10.

Bhatt, M. D., Kim, H., & Kim, G. (2022). Various defects in graphene: A review. RSC Advances, 33, 1-15. https://doi.org/10.1039/D2RA01436J.

Chen, B.-H. (2014). Mechanical response of hydrogen-filled single-walled carbon nanotubes under torsion. International Journal of Hydrogen Energy, 39(3), 1382-1389. https://doi.org/10.1016/j.ijhydene.2013.10.121.

Chen, B.-H., & Kung, C. (2020). Quantum confinement and torsional responses of single-wall carbon nanotubes filled with hydrogen molecules. International Journal of Hydrogen Energy, 45(58), 33798-33806. https://doi.org/10.1016/j.ijhydene.2020.09.092.

Chen, G., Peng, Q., Mizuseki, H., & Kawazoe, Y. (2010). Theoretical investigation of hydrogen storage ability of a carbon nanohorn. Computational Materials Science, 49(4, Supplement), S378-S382. https://doi.org/10.1016/j.commatsci.2009.12.013.

Crespo, E. A., Braschi, F. U., & Bringa, E. M. (2018). Almacenamiento de H₂ a escala nanométrica: Un estudio por dinámica molecular. Rumbos Tecnológicos, 10, 45-60. https://rumbostecnologicos.utnfrainvestigacionyposgrado.com/volumenes/rumbos-10/almacenamiento-de-h2-a-escala-nanometrica-un-estudio-por-dinamica-molecular/

Comisso, N., Berlouis, L. E. A., Morrow, J., & Pagura, C. (2010). Changes in hydrogen storage properties of carbon nano-horns submitted to thermal oxidation. International Journal of Hydrogen Energy, 35(17), 9070-9081. https://doi.org/10.1016/j.ijhydene.2010.06.034.

Dubyey, L., Ukrainczyk, N., Yadav, S., Izadifar, M., Schneider, J. J., & Koenders, E. (2024). Carbon nanotubes and nanohorns in geopolymers: A study on chemical, physical and mechanical properties. Materials & Design, 240, 112851. https://doi.org/10.1016/j.matdes.2024.112851.

Dethan, J. F. N., & Swamy, V. (2022). Mechanical and thermal properties of carbon nanotubes and boron nitride nanotubes for fuel cells and hydrogen storage applications: A comparative review of molecular dynamics studies. International Journal of Hydrogen Energy, 47(59), 24916-24944. https://doi.org/10.1016/j.ijhydene.2022.05.240.

Fresco-Cala, B., López-Lorente, Á. I., & Cárdenas, S. (2018). Monolithic solid based on single-walled carbon nanohorns: Preparation, characterization, and practical evaluation as a sorbent. Nanomaterials, 8(6), 370. https://doi.org/10.3390/nano8060370.

Liao, R.-Z., Wei, S., Yi, W.-J., Chen, J.-H., & Yue, X.-Z. (2025). Synergistic effect of RuNi alloy supported by carbon nanohorns for boosted hydrogen evolution from ammonia borane hydrolysis. Journal of Colloid and Interface Science, 690, 137264. https://doi.org/10.1016/j.jcis.2025.137264.

Liu, X., Ying, Y., & Ping, J. (2020). Structure, synthesis, and sensing applications of single-walled carbon nanohorns. Biosensors and Bioelectronics, 167, 112495. https://doi.org/10.1016/j.bios.2020.112495.

Iijima, S. (2002). Carbon nanotubes: past, present, and future. Physica B: Condensed Matter, 323(1–4), 1-5. https://doi.org/10.1016/S0921-4526(02)00869-4.

Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., & Takahashi, K. (1999). Nano-aggregates of single-walled graphitic carbon nano-horns. Chemical Physics Letters, 309(3–4), 165-170. https://doi.org/10.1016/S0009-2614(99)00642-9.

Kagkoura, A., Ojeda-Galván, H. J., Quintana, M., & Tagmatarchis, N. (2023). Carbon dots strongly immobilized onto carbon nanohorns as non-metal heterostructure with high electrocatalytic activity towards protons reduction in hydrogen evolution reaction. Small, 19(31), 2208285. https://doi.org/10.1002/smll.202208285.

Kowalczyk, P., Terzyk, A. P., Gauden, P. A., Furmaniak, S., & Kaneko, K. (2014). Toward in silico modeling of palladium–hydrogen–carbon nanohorn nanocomposites. Physical Chemistry Chemical Physics, 16(23), 11763-11769. https://doi.org/10.1039/C4CP01345J.

Nguyen, T. A., & Assadi, A. A. (2018). Smart nanocontainers: Preparation, loading/release processes and applications. Kenkyu Journal of Nanotechnology & Nanoscience, 4(S1), 1-6. https://doi.org/10.31872/2018/KJNN-S1-100101.

National Institute of Standards and Technology. (s.f.). NIST Chemistry WebBook. Recuperado el 22 de mayo de 2025, de https://webbook.nist.gov.

Pagura, C., Barison, S., Mortalò, C., Comisso, N., & Schiavon, M. (2012). Large scale and low cost production of pristine and oxidized single wall carbon nanohorns as material for hydrogen storage. Nanoscience and Nanotechnology Letters, 4(2), 160-164. https://doi.org/10.1166/nnl.2012.1308.

Pandit, J., Alam, M. S., Javed, M. N., Waziri, A., & Imam, S. S. (2023). Emerging roles of carbon nanohorns as sustainable nanomaterials in sensor, catalyst, and biomedical applications. En Handbook of Green and Sustainable Nanotechnology (pp. 1721-1747). Springer. https://doi.org/10.1007/978-3-031-16101-8_48.

Qi, Y., & Miyako, E. (2025). Multifunctional magnetic ionic liquid-carbon nanohorn complexes for targeted cancer theranostics. Small Science, 5(3), 202400640. https://doi.org/10.1002/smsc.202400640.

Rungnim, C., Faungnawakij, K., Sano, N., Kungwan, N., & Namuangruk, S. (2018). Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. International Journal of Hydrogen Energy, 43(52), 23336-23345. https://doi.org/10.1016/j.ijhydene.2018.10.211.

Serban, B. C., Bumbac, M., Buiu, O., Cobianau, C., Brezeanu, M., & Nicolescu C. (2018) Carbon nanohorns and their nanocomposites synthesis, properties and aplications. A concise review. Annals of the Academy of Romanian Scientists Series on Science and Technology of Information Volume 11, Number 2/2018. https://www.researchgate.net/publication/329782184.

Serban, B. C., Buiu, O., Dumbravescu, N., Brezeanu, M., Cobianu, C., Bumbac, M., & Nicolescu, M. (2024). Some considerations about the sensing mechanisms and electrical response of carbon nanohorns–based gas sensors. Romanian Journal of Information Science and Technology, 27(2), 137-150. https://doi.org/10.59277/ROMJIST.2024.2.02.

Shi, K., Smith, E. R., Santiso, E. E., & Gubbins, K. E. (2023). A perspective on the microscopic pressure (stress) tensor: History, current understanding, and future challenges. The Journal of Chemical Physics, 158(4), 040901. https://doi.org/10.1063/5.0132487.

Stuart, S. J., Tutein, A. B., & Harrison, J. A. (2000). A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 112(14), 6472-6486. https://doi.org/10.1063/1.481208.

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in ‘t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171.

Vijayaraghavan, V., Dethan, J. F. N., & Gao, L. (2019). Torsional mechanics of single walled carbon nanotubes with hydrogen for energy storage and fuel cell applications. Science China Physics, Mechanics & Astronomy, 62, 34611. https://doi.org/10.1007/s11433-018-9270-7.

Vijayaraghavan, V., Dethan, J. F. N., & Garg, A. (2018a). Nanomechanics and modelling of hydrogen stored carbon nanotubes under compression for PEM fuel cell applications. Computational Materials Science, 146, 176-183. https://doi.org/10.1016/j.commatsci.2018.01.041.

Vijayaraghavan, V., Dethan, J. F. N., & Garg, A. (2018b). Tensile loading characteristics of hydrogen stored carbon nanotubes in PEM fuel cell operating conditions using molecular dynamics simulation. Molecular Simulation, 44(9), 736-742. https://doi.org/10.1080/08927022.2018.1445246.

Zehra, S., Mobin, M., Aslam, R., & Bhat, S. U. I. (2023). Nanocontainers: A comprehensive review on their application in the stimuli-responsive smart functional coatings. Progress in Organic Coatings, 176, 107389. https://doi.org/10.1016/j.porgcoat.2022.107389.

Xie, Z., Lu, S., Peng, H., Liu, Y., Chen, J., Zhang, D., Liu, Y., Yang, B., & Liang, F. (2024). Regulating the structure of single-walled carbon nanohorns for impedance matching and electromagnetic wave absorption. ACS Applied Nano Materials, 7(22), 25921–25930. https://doi.org/10.1021/acsanm.4c05090.

Zhou, L. G., & Shi, S. Q. (2002). Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage. Computational Materials Science, 23(1–4), 166-174. https://doi.org/10.1016/S0927-0256(01)00233-6.

Publicado

2025-06-10

Como Citar

Crespo, E. A., González, J. M., Azucena Orozco, M., & Marcial Bringa, E. (2025). Nanohorns de carbono de parede única como recipientes para hidrogênio molecular. Revista De Tecnologia E Ciência, (53), 15–25. https://doi.org/10.33414/rtyc.53.15-25.2025