Obtaining induction motor curves using an equivalent circuit with variable parameters

Authors

  • Omar Dionisio Gallo Universidad Tecnológica Nacional FR. San Francisco - Argentina
  • Diego Martìn Ferreyra Universidad Tecnológica Nacional FR. San Francisco - Argentina

DOI:

https://doi.org/10.33414/rtyc.42.112-134.2021

Keywords:

equivalent circuit, curves of electric motors, characteristic curves of electric motors

Abstract

This study deals with the plotting of characteristic curves, as a function of speed, of three-phase asynchronous motors with power ratings below 450 kW.

Conventional equivalent circuit, test or manufacturer's data are used and the information is processed with Python programming language; variable impedances are calculated, simplifying assumptions, standard recommendations and loss estimates are applied.

The returns of the program and some of the curves obtained are presented, between start-up times and no-load operation. The returns under different standardised load states and the values of electrical and magnetic requirements are added.

The aim is to provide an alternative method for the study of three-phase induction motors, applying the traditional principles of theoretical analysis, real construction data, practical test results and a modern programming language.

Downloads

Download data is not yet available.

Author Biography

Diego Martìn Ferreyra, Universidad Tecnológica Nacional FR. San Francisco - Argentina

Professor of Electromechanical Engineering


Doctor and researcher at UTN FR San Francisco.


Director of Research Groups

References

Amaral, G.F.V. et al (2021) “A High Precision Method for Induction Machine Parameters Estimation From Manufacturer Data” . IEEE Transactions on. 36(2):1226-1233 Energy Conversion, USA. Disponible en: http://portal.bibliotecas.utn.edu.ar/proxy/https://ieeexplore.ieee.org/document/9234616

Chapman, S. (2005). “Máquinas Eléctricas”. México: Mc Graw Hill, 401-430.

Crisci, G. (1956). “Costruzione, schemi e calcolo degli avvolgimenti delle macchine electtriche ro-tanti”. Módena: STFM Mucchi: 675-815. Disponible en:<https://www.mucchieditore.it/index.php?option=com_virtuemart&view=productdetails&virtuemart_product_id=2168&virtuemart_category_id=67>

Corrales Martín, J. (1976). “Cálculo industrial de máquinas eléctricas”. Tomo I . Barcelona: Mar-combo B.E.: 236-276.

Corrales Martín, J. (1976). “Cálculo industrial de máquinas eléctricas”. Tomo II. Barcelona: Mar-combo B.E.: 380-430.

EASA/AEMT. (2003). “El Efecto de la Reparación/Rebobinado en la Eficiencia del Motor Estudio de Rebobinado EASA/AEMT y Guía de Buenas Prácticas Para Conservar La Eficiencia del Motor”. USA, 18-19. Disponible en: <https://www.academia.edu/36573565/El_Efecto_de_la_Reparaci%C3%B-3n_Rebobinado_en_la_Eficiencia_del_Motor_Estudio_de_Rebobinado_EAS-A_AEMT_y_Gu%C3%ADa_de_Buenas_Pr%C3%A1cticas_Para_Conservar_La_Eficiencia_del_Motor>

Fraile Mora, J. (2008). “Máquinas Eléctricas”. Madrid: Mc Graw Hill, 259-334.

Gallo, O. (2017). “Convenio Universidad – Empresa. Grupo CIDEME. Servicios, investigación y formación de estudiantes tecnológicos”. Editorial edUTecNe de la UTN. Disponible en: https://ria.utn.edu.ar/bitstream/handle/20.500.12272/3356/2017%20CIDEME.pdf?sequence=1&isAllowed=y

Gallo, O. y Gallo, J. (2014). “Programa de Gestión de Bobinados (ProGeBo) (Primera parte)”. Revista Iberoamericana de Ingeniería Industrial. Brasil, Vol. 6, N° 11, ISSN 2175¬8018, pp. 328-348, noviembre 2014. Disponible en: https://ria.utn.edu.ar/handle/20.500.12272/3331

Gallo, O y Gallo, J. (2017). “Programa de Gestión de Bobinados (ProGeBo). Parte II”. 46º Congreso JAIIO, Córdoba, Argentina. Disponible en: https://ria.utn.edu.ar/handle/20.500.12272/3359

González Duque, R. (2019). “Python para todos”. Disponible en: <http://mundogeek.net/tutorial-python/>

Juha Pyrhönen, J. et al. , (2008). “Design of Rotating Electrical Machines”. UK: John Wiley & Sons, Ltd. : 225-280.

LafertGroup (2021). “IE3 Range. Premium Efficiency Three Phase Motors”. Italia. Disponible en: <https://www.lafertaust.com.au/wp-content/uploads/2019/01/Brochure-IE3-Range-2019.pdf>

Liwschitz-Garik, M; Whipple, C. (1974). “Máquinas de corriente alterna”. México: Editorial CECSA: 177-209.

Norma IEC 60034-1. (2017). “Rotating electrical machines - Part 1: Rating and performance”. Disponible en: <https://www.une.org/encuentra-tu-norma/busca-tu-norma/iec?c=28145>

Norma IEC 60034-2-1. (2014). Rotating electrical machines – Part 2-1: Standard methods for de-termining losses an efficiency from tests (excluding machines for tracción vehicles). Disponible en: <https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0053468>

Python Software Foundation. (2021). “Documentation”. Disponible en: <https://www.python.org/>

Sale A, A. et al. (2018). “Optimization of Induction Motor Equivalent Circuit Parameter Estimation Based on Manufacturer’s Data”. Energies, 2018, 11, 7, 1. Disponible en: <http://portal.bibliotecas.utn.edu.ar/proxy/https://ideas.repec.org/a/gam/jeners/v11y2018i7p1792-d156869.html>

WEG. (2021). “Motor Modular IE2 110 kW 4P 280S/M 3F 200/346/400/690//230/400 V 50 Hz IC411 - TEFC – B. Curva de par y corriente x rotación”. Brasil. Disponible en: <https://www.weg.net/catalog/weg/ES/es/Motores-El%C3%A9ctricos/Motores-para-Aplicaci%C3%B3n-Industrial/Motor-Modular/Motor-Modular-%28Hierro-Gris%29/Motor-Modular-IE2-110-kW-4P-280S-M-3F-200-346-400-690-230-400-V-50-Hz-IC411---TEFC---B3T/p/12411261>

Wengerkievicz C. et al. (2017). “Estimation of Three-Phase Induction Motor Equivalent Circuit Parameters from Manufacturer Catalog Data”. Journal of Microwaves, Optoelectronics and Elec-tromagnetic Applications. March 2017 16(1): 90-107. Disponible en: <http://portal.bibliotecas.utn.edu.ar/proxy/http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742017000100090&lng=en&tlng=en>

Published

2021-11-30

How to Cite

Gallo, O. D., & Ferreyra, D. M. (2021). Obtaining induction motor curves using an equivalent circuit with variable parameters. Technology and Science Magazine, (42), 112–134. https://doi.org/10.33414/rtyc.42.112-134.2021