V2I Implementation Using Artificial Vision and a Bayesian Classifier

Authors

  • Raimundol Vazquez GUDA-Grupo Universitario de Automatización - Universidad Tecnológica Nacional - Facultad Regional Resistencia-Chaco- Argentina
  • Alejandro Burgos GUDA-Grupo Universitario de Automatización - Universidad Tecnológica Nacional - Facultad Regional Resistencia-Chaco- Argentina
  • Jorge Marighuetti GUDA-Grupo Universitario de Automatización - Universidad Tecnológica Nacional - Facultad Regional Resistencia-Chaco- Argentina
  • Martini Fernandez GUDA-Grupo Universitario de Automatización - Universidad Tecnológica Nacional - Facultad Regional Resistencia-Chaco- Argentina
  • Marcos Portillo GUDA-Grupo Universitario de Automatización - Universidad Tecnológica Nacional - Facultad Regional Resistencia-Chaco- Argentina
  • Luis Canali Universidad Tecnológica Nacional - Facultad Regional Córdoba - Argentina

DOI:

https://doi.org/10.33414/rtyc.36.202-211.2019

Keywords:

V21 communication, Haar classifiers, Bayesian classifiers

Abstract

A procedure for classifying the state of vehicular traffic is implemented, using artificial vision tools, a Haar filter and a Bayesian classifier. The software developed simulates the operation of magnetic sensors distributed in the passable way. Digital image processing techniques allow vehicular detection in areas of complex traffic. The use of the Haar filter allows quantifying the number of vehicles parked and in circulation. The relevant information obtained in the video camera frames allows to establish a characteristic traffic vector. Subsequently, using a Bayesian classifier, the vector data is merged into four categories: zero traffic, low traffic, medium traffic and congested traffic. Finally, the results of the predictions are transmitted wirelessly between generic devices that simulate the known experience with the name of vehicle to infrastructure communication or V2I.

Downloads

Download data is not yet available.

Published

2019-10-30

How to Cite

Vazquez, R., Burgos, A., Marighuetti, J., Fernandez, M., Portillo, M., & Canali, L. (2019). V2I Implementation Using Artificial Vision and a Bayesian Classifier. Technology and Science Magazine, (36), 202–211. https://doi.org/10.33414/rtyc.36.202-211.2019