Evaluation of cyanide stability in aqueous solutions: effect of pH, aeration, and nutrients

Authors

  • Elisabet Graciela Robert Universidad Tecnológica Nacional, Facultad Regional Córdoba, Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Argentina https://orcid.org/0009-0006-0513-4253
  • María José Pascualone Universidad Tecnológica Nacional, Facultad Regional Córdoba, Centro de Investigación y Transferencia en Ingeniería Química Ambiental (CIQA), Argentina. https://orcid.org/0000-0001-5495-393X

DOI:

https://doi.org/10.33414/rtyc.52.36-47.2025

Keywords:

Cyanide stability, Free cyanide, Cyanometallic complexes, Cyanohydrins

Abstract

The stability of cyanide in NaOH solution was evaluated as a function of pH, aeration, and nutrient addition. The results indicated that aeration and pH are critical factors for its stability; a significant decrease in cyanide concentration was observed especially at pH 11 with aeration. The addition of nutrients, such as glucose and inorganic salts, influenced the stability, suggesting that chemical reactions related to the formation of cyanohydrins that affect the cyanide concentration could occur. To address this instability, free cyanide was converted into iron complexes, resulting in a significant improvement in solution stability. These findings highlight the potential of cyanometallic complexes as an effective strategy for the safe management of cyanide in environmental applications, contributing to safer practices in its use and treatment.

Downloads

References

Alvillo-Rivera, A., Garrido-Hoyos, S., Buitrón, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418-1433. https://doi.org/10.1016/j.jmrt.2021.03.030

APHA, AWWA, WEF. (2023). Standard methods for the examination of water and wastewater. 24nd ed. Washington, USA: American Public Health Association.

Arun, P., Moffett, J. R., Ives, J. A., Todorov, T. I., Centeno, J. A., Namboodiri, M. A., & Jonas, W. B. (2005). Rapid sodium cyanide depletion in cell culture media: Outgassing of hydrogen cyanide at physiological pH. Analytical Biochemistry, 339(2), 282-289. https://doi.org/10.1016/j.ab.2005.01.015

Botz, M., Mudder, T., & Akcil, A. (2016). Cyanide treatment. En Elsevier eBooks (pp. 619-645). https://doi.org/10.1016/b978-0-444-63658-4.00035-9

Huertas, M., Sáez, L., Roldán, M., Luque-Almagro, V., Martínez-Luque, M., Blasco, R., Castillo, F., Moreno-Vivián, C., & García-García, I. (2010). Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. Journal of Hazardous Materials, 179 (1-3), 72-78. https://doi.org/10.1016/j.jhazmat.2010.02.059

Johnson, C. A. (2015). The fate of cyanide in leach wastes at gold mines: An environmental perspective. Applied Geochemistry, 57, 194-205. https://doi.org/10.1016/j.apgeochem.2014.05.023

Kjeldsen, P. (1999). Behaviour of cyanides in soil and groundwater: A review. Water Air & Soil Pollution, 115, 279-308. https://doi.org/10.1023/a:1005145324157

Kumar, A., Shemi, A., Chipise, L., Moodley, S., Yah, C. S., & Ndlovu, S. (2023). Can microbial Bio-CN be a sustainable alternative to the chemical cyanidation of precious metals? An update and way forward. Renewable and Sustainable Energy Reviews, 188, 113892. https://doi.org/10.1016/j.rser.2023.113892

Kyoseva, V., Todorova, E. & Dombalov, I. (2009). Comparative assessment of the methods for destruction of cyanides used in gold mining industry. Journal of the University of Chemical Technology and Metallurgy, 44, 403-408.

Mekuto, L., Ntwampe, S., & Akcil, A. (2016). An integrated biological approach for treatment of cyanidation wastewater. The Science of the Total Environment, 571, 711-720. https://doi.org/10.1016/j.scitotenv.2016.07.040

Meeussen, J.C.L. (1992). Chemical speciation and behaviour of cyanide in contaminated soils. [internal PhD, WU]. Landbouwuniversiteit Wageningen. https://doi.org/10.18174/202990

Petrov, S.V., & Petrov, V.F. (2007). Hydrolysis of cyanides in aqueous solutions. Russian Journal of Inorganic Chemistry, 52, 793-795. https://doi.org/10.1134/S0036023607050245

Razanamahandry, L. C., Andrianisa, H. A., Karoui, H., Podgorski, J., & Yacouba, H. (2017). Prediction model for cyanide soil pollution in artisanal gold mining area by using logistic regression. CATENA, 162, 40-50. https://doi.org/10.1016/j.catena.2017.11.018

Welman-Purchase, M. D., Castillo, J., Gomez-Arias, A., Matu, A., & Hansen, R. N. (2024). First insight into the natural biodegradation of cyanide in a gold tailings environment enriched in cyanide compounds. The Science of the Total Environment, 906, 167174. https://doi.org/10.1016/j.scitotenv.2023.167174

Published

2025-03-13

How to Cite

Robert, E. G., & Pascualone, M. J. (2025). Evaluation of cyanide stability in aqueous solutions: effect of pH, aeration, and nutrients . Technology and Science Magazine, (52), 36–47. https://doi.org/10.33414/rtyc.52.36-47.2025