Efecto potencialmente tóxico de un efluente de lavado de vehículos sobre bacterias heterótrofas

Autores/as

  • Julio Marín Departamento de Ingeniería Sanitaria y Ambiental (DISA), Escuela de Ingeniería Civil, Facultad de Ingeniería, Universidad del Zulia, Venezuela. https://orcid.org/0000-0003-2770-5978
  • Paola Bruzual Departamento de Ingeniería Sanitaria y Ambiental (DISA), Escuela de Ingeniería Civil, Facultad de Ingeniería, Universidad del Zulia, Venezuela.
  • Caneldy Pacheco Departamento de Ingeniería Sanitaria y Ambiental (DISA), Escuela de Ingeniería Civil, Facultad de Ingeniería, Universidad del Zulia, Venezuela.
  • Laugeny Díaz Laboratorio de Microorganismos Fotosintéticos, Departamento de Biología, Facultad Experimental de Ciencias, Universidad del Zulia, Venezuela. https://orcid.org/0000-0002-8263-081X

DOI:

https://doi.org/10.33414/rtyc.53.57-78.2025

Palabras clave:

Análisis Probit, Efluentes industriales, Hidrocarburos, Inhibición del crecimiento, Efecto ecotoxicológico

Resumen

Se evaluó el efecto potencialmente tóxico de un efluente de lavado de vehículos sobre bacterias heterótrofas de dos orígenes diferentes: agua del estuario Lago de Maracaibo y suelo fértil. Se aplicó la técnica estándar de conteo en placas con un periodo de exposición de 24 h al efluente en proporciones de 25, 50, 75 y 100 %, calculando finalmente las concentraciones inhibitorias que afectan al 10, 50 y 90 % de la comunidad de ensayo (CI10, CI50 y CI90), mediante análisis Probit. El efluente presentó altos niveles de color, sólidos totales, materia orgánica, aceites y grasas, hidrocarburos totales y sulfato. El efecto tóxico del efluente fue bajo, con valores de CI50 entre 93,3 y 96,7 % y unidades de toxicidad entre 1,03 y 1,07; mostrando la elevada capacidad de estas bacterias para tolerar ambientes altamente contaminados.

Descargas

Citas

Abdelshafy, A. M., Mahmoud, A. R., Abdelrahman, T. M., Mustafa, M. A., Atta, O. M., Abdelmegiud, M. H. & Al-Asmari, F. (2024). Biodegradation of chemical contamination by lactic acid bacteria: a biological tool for food safety. Food Chemistry, 460(Part 2), 140732. https://doi.org/10.1016/j.foodchem.2024.140732

Akhavan, S., Sharifian, S., Zolfaghari, M., Khalily, D. & Rashedi, H. (2015). Study on heavy metal resistant fecal coliforms isolated from industrial, urban wastewater in Arak, Iran. International Journal of Environmental Research, 9(4), 1217-1224. https://ijer.ut.ac.ir/article_1012_046d66429eddbcf6b4fa29aff1b557cb.pdf

Aladwan, M. M., Dababneh, B. F., Farah, H. S. & Abusala, M. A. H. (2024). Identification of oil degrading bacteria from oil-contaminated soil in the Northeastern part of Jordan. Journal of Ecological Engineering, 25(5), 306-320. https://doi.org/10.12911/22998993/186502

Al-Odwani, A., Ahmed, M. & Bou-Hamad, S. (2007). Carwash water reclamation in Kuwait. Desalination, 206(1-3), 17-28. https://doi.org/10.1016/j.desal.2006.03.560

American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). (2023). Standard methods for the examination of water and wastewater. 24th edition. Lipps, W. C., Braun-Howland, E. B. & Baxter, T. E. (Eds.). Washington, D.C.: American Public Health Association.

Bai, B., Zhang, L., Dong, H. & Huang, Y. (2023). Coupled Fe(III) reduction and phenanthrene degradation by marine-derived Kocuria oceani FXJ8.057 under aerobic condition. Journal of Hazardous Materials, 459, 132237. https://doi.org/10.1016/j.jhazmat.2023.132237

Bautista, S. (1997). Proceso de salinización en el Lago de Maracaibo. Maracaibo: Instituto para el Control y la Conservación del Lago de Maracaibo.

Bedoui, A., Tigini, V., Ghedira, K., Varese, G.C. & Ghedira, L. C. (2015). Evaluation of an eventual ecotoxicity induced by textile effluents using a battery of biotests. Environmental Science and Pollution Research, 22, 16700-16708. https://doi.org/10.1007/s11356-015-4862-3

Belal, B. E., Sidkey, N. M., Gad, W. A. & El-Gendy, S. S. (2020). Biodegradation of organochlorine pesticides by means of Pectobacterıum wasabiae. International Journal of Oceanography & Aquaculture, 4(1), 000183. https://doi.org/10.23880/ijoac-16000183

Bohórquez-Echeverry, P. & Campos-Pinilla, C. (2007). Evaluación de Lactuca sativa y Selenastrum capricornutum como indicadores de toxicidad en aguas. Universitas Scientiarum, 12(2), 83-98. https://www.redalyc.org/pdf/499/49910969006.pdf

Boussu, K., Kindts, K., Vandecasteele, C. & Van Der Brugger, B. (2007). Applicability of nanofiltration in the carwash industry. Separation and Purification Technology, 54(2), 139-146. https://doi.org/10.1016/j.seppur.2006.08.024

Carter, M. R. & Gregorich, E. G. (2008). Soil sampling and methods of analysis. 2nd edition. Boca Raton: CRC Press, Taylor & Francis. https://doi.org/10.1111/j.1365-2389.2008.01052_5.x

Castañeda, M. (2009). Microbiología aplicada: manual de laboratorio. México D. F.: Universidad Autónoma Metropolitana. https://zaloamati.azc.uam.mx/items/dc777a0e-9304-490c-99d2-82610197ec9a

Castro, S., Espinola, C., Miguez, D. & Viana, F. (2002). Los bioensayos como herramientas de evaluación de la toxicidad de los efluentes industriales en Uruguay. Montevideo: Laboratorio Tecnológico del Uruguay. https://idl-bnc-idrc.dspacedirect.org/items/2c5c5205-33a4-4026-bc0d-8c42b07fcef5

Castro-Echavez, F. L. & Marín-Leal, J. C. (2018). Comparación de la ecotoxicidad por metales pesados sobre bacterias heterótrofas de dos sitios contrastados del Lago de Maracaibo (Venezuela). Revista Facultad de Ciencias Básicas, 14(1), 9-17. https://doi.org/10.18359/rfcb.2825

Celaya-Michel, H. & Castellanos-Villegas, A. E. (2011). Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoamericana, 29(3), 343-356. https://www.redalyc.org/pdf/573/57321283013.pdf

Das, N. & Chandran, P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnology Research International, 2011, 941810. https://doi.org/10.4061/2011/941810

Decreto 883. (1995). Normas para la clasificación y el control de la calidad de los cuerpos de agua y vertidos o efluentes líquidos. Gaceta Oficial N° 5021. Caracas: Asamblea Nacional de la República Bolivariana de Venezuela.

Díaz-Borrego, L., Dupontt, J., Espina, K., Rincón, N., García, M. & Atencio, L. (2007). Utilización de sustratos orgánicos y resistencia a metales pesados por bacterias asociadas a Lemna spp. Boletín del Centro de Investigaciones Biológicas, 41(1), 27-43. https://produccioncientificaluz.org/index.php/boletin/article/view/89

Dudhagara, D. R. & Dave, B. P. (2018). Mycobacterium as polycyclic aromatic hydrocarbons (PAHs) degrader. In: Mycobacterium – Research and Development. Ribón, W. (Ed.). London: IntechOpen Limited. https://dx.doi.org/10.5772/intechopen.73546

Durve, A., Naphade, S., Bhot, M., Varghese, J. & Chandra, N. (2012). Characterisation of metal and xenobiotic resistance in bacteria isolated from textile effluent. Advances in Applied Science Research, 3(5), 2801-2806. https://www.primescholars.com/articles/characterisation-of-metal-and-xenobiotic-resistance-in-bacteria-isolated-fromtextile-effluent.pdf

Emmanuel-Akerele, H. A., Akinyemi, P. O. & Igbogbo-Ekpunobi, O. E. (2022). Isolation and identification of plastic degrading bacteria from dumpsites Lagos. Advances in Environmental Technology, 1, 59-71. https://doi.org/10.22104/AET.2022.5268.1428

Fall, C., Moleon, M., Ba, M., Delgado, C., Mulido, D. & Chavez, M. (2007). Carwash wastewater: characteristic, volume, and treatability by gravity oil separation, Revista Mexicana de Ingeniería Química, 6(2), 175-184. http://www.redalyc.org/articulo.oa?id=62060206

Feknous, N., Branes, Z., Batisson, I. & Amblard, C. (2019). Growth of indigenous bacteria Vibrio alginolyticus and Dietzia sp. isolated from the east coast of Algeria in the presence of monoaromatic hydrocarbons. Environment Protection Engineering, 45(3), 127-137. https://doi.org/10.5277/epe190309

Feng, H., Xu, L., Chen, R., Ma, X., Qiao, H., Zhao, N., Ding, Y. & Wu, D. (2022). Detoxification mechanisms of electroactive microorganisms under toxicity stress: a review. Frontiers in Microbiology. 13, 1084530. https://doi.org/10.3389/fmicb.2022.1084530

García-González, V., Sánchez-Mesa, J. C., Pacheco-Salazar, V. F., Ávila-González, C. de J., Pavón-Silva, T. B. & Guerrero-González, P. (2005). Respuestas de toxicidad de bioensayos empleados en la evaluación de aguas residuales de la industria. Memorias. México D. F.: Universidad Autónoma del Estado de México.

Garrity, G. M. (Ed.). (2010). Bergey’s manual of systematics bacteriology. 2nd edition. New York: Springer.

Halverson, L. J. (2005). Bacteria, soil. Encyclopedia of Soils in the Environment, 2005, 115-122. https://doi.org/10.1016/B0-12-348530-4/00135-1

Hashim, N. H. & Zayadi, N. (2016). Pollutants characterization of car wash wastewater. MATEC Web of Conferences, 47, 05008. https://doi.org/10.1051/matecconf/20164705008

Hu, F., Wang, P., Li, Y., Ling, J., Ruan, Y., Yu, J. & Zhang, L. (2023). Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: mechanisms, methods and challenges. Environmental Research, 239(Part 1), 117211. https://doi.org/10.1016/j.envres.2023.117211

International Soil Reference and Information Centre – ISRIC & Food and Agriculture Organization of the United Nations – FAO. (2002). Procedures for soil analysis. Van Reeuwijk, L. P. (Ed.). Wageningen: International Soil Reference and Information Centre. https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf

Jiménez, J. G., Gelabert, R. & Brito, R. (2006). Efectos tóxicos del níquel y el zinc en Artemia franciscana (Crustacea: Branchiopoda: Anostraca). Universidad y Ciencia, 22(1), 65-74. https://www.redalyc.org/pdf/154/15402205.pdf

Kot-Wasik, A., Dąbrowska, D. & Namieśnik, J. (2004). The importance of degradation in the fate of selected organic compounds in the environment. Part I. General considerations. Polish Journal of Environmental Studies, 13(6), 607-616. https://www.pjoes.com/pdf-87705-21564?filename=21564.pdf

Kumari, S., Amit & Jamwal, R. (2022). Isolation and identification of Jeotgalicoccus sp. CR2 and evaluation of its resistance towards heavy metals. Cleaner Waste Systems, 3, 100062. https://doi.org/10.1016/j.clwas.2022.100062

Lee, Y. C., Whang, L. M., Ngo, M. H., Chen, T. H. & Cheng, H. H. (2016). Acute toxicity assessment of TFT-LCD wastewater using Daphnia similis and Cyprinus carpio. Process Safety and Environmental Protection, 104 (Part B), 499-506, http://dx.doi.org/10.1016/j.psep.2016.03.003

Lin, Q., Zhou, X., Zhang, S., Gao, J., Xie, M., Tao, L., Sun, F., Shen, C., Hashmi, M. Z. & Su, X. (2022). Oxidative dehalogenation and mineralization of polychlorinated biphenyls by a resuscitated strain Streptococcus sp. SPC0. Environmental Research, 207, 112648. https://doi.org/10.1016/j.envres.2021.112648

Liwarska-Bizukojc, E., Miksch, K., Malachowska-Jutsz, A. & Kalka, J. (2005). Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere, 58(9), 1249-1253. https://doi.org/10.1016/j.chemosphere.2004.10.031

MacFaddin, J. (2004). Pruebas bioquímicas para la identificación de bacterias de importancia clínica. 3ra edición. Madrid: Editorial Panamericana.

Madigan, M., Martinko, J. & Parker, J. (2004). Brock, biología de los microorganismos. 9na edición. Madrid: Ediciones Prentice-Hall Inc.

Marín-Leal, J. C., Carrasquero-Ferrer, S. J., Pire-Sierra, M. C. & Behling de Calmón, E. H. (2017). Dynamic of priority pollutants and wastewater adequacy in the Lake Maracaibo basin (Venezuela). Chapter 29. In: Ecotoxicology in Latin America. Araújo, C. V. M. & Shinn, C. (Eds.). Nueva York: Nova Science Publishers Inc.

Messrouk, H., Mahammed, M. H., Touil, Y. & Amrane, A. (2014). Physico-chemical characterization of industrial effluents from the town of Ouargla (South East Algeria). Energy Procedia, 50, 255-262. https://doi.org/10.1016/j.egypro.2014.06.031

Murray, P., Baron, E., Faller, M., Tenover, F. & Yolken, R. (1999). Manual of clinical microbiology. 6th edition. Washington D. C.: ASM Press.

Nguegang, B., Sibanda, T. & Tekere, M. (2019). Cultivable bacterial diversity, physicochemical profiles, and toxicity determination of car wash effluents. Environmental Monitoring and Assessment, 191, 478. https://doi.org/10.1007/s10661-019-7600-3

Organisation for Economic Co-operation and Development – OECD. (2002). Test No. 423: acute oral toxicity – Acute toxic class method. OECD Guideline for Testing of Chemicals. Section 4. Paris: Organisation for Economic Co-operation and Development. https://doi.org/10.1787/9789264071001-en

Pandolfo, E., Caracciolo, A. B. & Rolando, L. (2023). Recent advances in bacterial degradation of hydrocarbons. Water, 15(2), 375. https://doi.org/10.3390/w15020375

Park, J., Shin, K., Lee, H., Choi, S., Kim, G., Depuydt, S., De Saeger, J., Heynderickx, P. M., Wu, D., Asselman, J., Janssen, C. & Han, T. (2023). Evaluating ecotoxicological assays for comprehensive risk assessment of toxic metals present in industrial wastewaters in the Republic of Korea. Science of the Total Environment, 867, 161536. https://doi.org/10.1016/j.scitotenv.2023.161536

Pettifor, B. J., Doonan, J., Denman, S. & McDonald, J. E. (2020). Survival of Brenneria goodwinii and Gibbsiella quercinecans, associated with acute oak decline, in rainwater and forest soil. Systematic and Applied Microbiology, 43(2), 126052. https://doi.org/10.1016/j.syapm.2019.126052

Phungula, S. P. (2016). An evaluation of the water quality and toxicity of wastewater at selected car wash facilities in Tshwane, Gauteng. Master´s thesis. Pretoria: University of South Africa. https://uir.unisa.ac.za/items/2f9c650e-11f0-477a-baa6-6720dd778905

Pikula, K. S., Chernyshev, V. V., Zakharenko, A. M., Chaika, V. V., Waissi, G., Le Hong, H., To Trong, H., Tsatsakis, A. M. & Golokhvast, K. S. (2019). Toxicity assessment of particulate matter emitted from different types of vehicles on marine microalgae, Environmental Research, 179, 108785. https://doi.org/10.1016/j.envres.2019.108785

Pire, M., Castro, F., Marín, J. & Díaz, A. (2013). Toxicidad e infiltración en el suelo del efluente de una tenería almacenado en lagunas. Memorias del Congreso de Ciencias Ambientales (COPIME 2013). Buenos Aires: Consejo Profesional de Ingeniería Mecánica y Electricista.

Plaza, G. A., Jangid, K., Lukasik, K., Nalecz-Jawecki, G., Berry, C. J. & Brigmon, R. L. (2008). Reduction of petroleum hydrocarbons and toxicity in refinery wastewater by bioremediation. Bulletin of Environmental Contamination and Toxicology, 81, 329-333. https://doi.org/10.1007/s00128-008-9411-z

Primadani, I. P. P., Ratnaningsih, R. & Rinanti, A. (2021). Removal of crude oil by Thiobacillus sp. and Clostridium sp. at various temperatures and concentration of pollutant in liquid media. IOP Conference Series: Materials Science and Engineering, 1098, 052034. https://doi.org/10.1088/1757-899X/1098/5/052034

Ren, S. (2004). Assessing wastewater toxicity to activated sludge: recent research and developments. Environment International, 30(8), 1151-1164. https://doi.org/10.1016/j.envint.2004.06.003

Reynolds, J. (2002). Laboratory procedures manual. Dallas: Richland College.

Sablayrolles, C., Vialle, C., Vignoles, C. & Montrejaud-Vignoles, M. (2010). Impact of carwash discharge on stormwater quality (Toulouse, France). Water, Science & Technology, 62(12), 2737-2746. https://doi.org/10.2166/wst.2010.929

Sáenz, M. E., Tortorelli, M. del C. & Freyre, L. R. (2003). Evaluación de la fitotoxicidad de efluentes industriales. Limnetica, 22(3-4), 137-146. https://www.limnetica.com/documentos/limnetica/limnetica-22-2-p-137.pdf

Sánchez, T., León, J., Woolcott, J. & Arauco, K. (2004). Proteasas extracelulares producidas por bacterias marinas aisladas de aguas contaminadas con efluentes pesqueros. Revista Peruana de Biología, 11(2), 179-186. http://www.scielo.org.pe/pdf/rpb/v11n2/v11n2a10.pdf

Sarmadi, M., Zarei, A. A., Ghahrchi, M., Sepehrnia, B., Meshkinian, A., Moein, H., Nakhaei, S. & Bazrafshan, E. (2021). Carwash wastewater characteristics – a systematic review study. Desalination and Water Treatment, 225, 112-148. https://doi.org/10.5004/dwt.2021.26972

Šaulienė, I., Motiekaitytė, V., Marčiulionienė, D. & Montvydienė, D. (2004). Application of biotests for toxicity evaluation of leachate and toxic tolerant vegetation processes in exploited landfill. Proceedings of the International Scientific Conference of 80 years Anniversary of Lithuanian University of Agriculture (Vandens telkinių apsauga ir valdymas [Protection and management of water bodies]). Kaunas: Lithuania, 194-198.

Talebzadeh, F., Valeo, C., Gupta, R. & Constabel, C. P. (2021). Exploring the potential in LID technologies for remediating heavy metal pollution from carwash wastewater. Sustainability, 13(16), 8727. https://doi.org/10.3390/su13168727

Tekere, M., Sibanda, T., Maphosa, F. & Momba, M. N. B. (2016). An evaluation of the water quality and toxicity of wastewater at selected car wash facilities in Tshwane, Gauteng. Water SA, 42(4), 603-610. https://doi.org/10.4314/wsa.v42i4.09

Tonkes, M. & Baltus, C. A. M. (1997). Praktijkonderzoek aan complexe efflenetenmet de totaal effluent milieubezwaarlikheid (TEM) – Metodiek. RIZA – rapportnummer 97.033. Lelystad: Institute for Inland Water Management and Waste Water Treatment (RIZA). https://www.ircwash.org/biblio/author/9383

Tonkes, M., de Graaf, P. J. F. & Graansma, J. (1999). Assessment of complex industrial effluents in the Netherlands using a whole effluent toxicity (or WET) approach. Water Science Technology, 39(1), 55-61. http://dx.doi.org/10.1016/S0273-1223(99)00253-X

U. S. Department of Agriculture – USDA. (2018). Using soil textural triangle. Washington D. C.: United States Department of Agriculture. https://www.sdsoilhealthcoalition.org/wp-content/uploads/2020/01/Using-Textural-Triangle-lesson-3-021318.pdf

U. S. Environmental Protection Agency – USEPA. (2000). Glossary. Understanding and accounting for method variability in WET applications under the NPDES program. Washington D. C.: United States Environmental Protection Agency. https://www3.epa.gov/npdes/pubs/f-glossy.pdf

U. S. Environmental Protection Agency – USEPA. (2016). 2015 annual effluent guidelines review report. Washington D. C.: United States Environmental Protection Agency. https://19january2017snapshot.epa.gov/sites/production/files/2016-06/documents/2015-annual-eg-review-report_june-2016.pdf

Waruguru, W. L. (2013). Determination of bacterial load and diversity inselected sites in Lake Nakuru, Kenya and their ability to degrade plastics and petroleum oil. Master´s thesis. Eldoret: University of Eldoret. http://erepository.uoeld.ac.ke/handle/123456789/1588

Wilhelm, R. C., Murphy, S. J. L., Feriancek, N. M., Karasz, D. C., DeRito, C. M., Newman, J. D. & Buckley, D. H. (2020). Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. International Journal of Systematic and Evolutionary Microbiology, 70, 2137-2146. https://doi.org/10.1099/ijsem.0.004029

Woźniak, P., Dubicki, M. & Gryta, M. (2023). Microbiological hazard analysis of car wash wastewater. Polish Journal of Environmental Studies, 32(4), 3871-3882. https://doi.org/10.15244/pjoes/163565

Descargas

Publicado

30-06-2025

Cómo citar

Marín, J., Bruzual, P. ., Pacheco, C., & Díaz, L. (2025). Efecto potencialmente tóxico de un efluente de lavado de vehículos sobre bacterias heterótrofas. Revista Tecnología Y Ciencia, (53), 57–78. https://doi.org/10.33414/rtyc.53.57-78.2025