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Abstract 

The aim of this work is to develop a Global Navigation Satellite System (GNSS) and Inertial Measurement Unit 
(IMU) sensor fusion system. To achieve this objective, we introduce a Moving Horizon Estimation (MHE) 
algorithm to estimate the position, velocity orientation and also the accelerometer and gyroscope bias of a 
simulated unmanned ground vehicle. The obtained results are compared with the true values of the system and 
with an Extended Kalman filter (EKF). The use of CasADi and Ipopt provide efficient numerical solvers that can 
obtain fast solutions. The quality of MHE estimated values enable us to consider MHE as a viable replacement for 
the popular Kalman Filter, even on real time systems. 

Keywords: State Estimation, Sensor Fusion, Moving Horizon Estimation, GNSS, IMU. 
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Resumen 
El propósito de este trabajo es el desarrollo de un sistema de fusión de datos provenientes de un Sistema Global 

de Navegación por Satélite (GNSS, del inglés Global NavigationSatelliteSystem) y una Unidad de Medición Inercial 
(IMU, del inglés InertialMeasurementUnit). Para alcanzar este objetivo, presentamos un algoritmo de Estimación 
de Horizonte Móvil (MHE, del inglés MovingHorizonEstimation) para estimar mediante simulación la posición, 
velocidad, orientación y los sesgos (o bias) del acelerómetro y giróscopo de un vehículo terrestre no tripulado. 
Los resultados obtenidos serán comparados con los valores reales del sistema y con los obtenidos mediante el 
uso de un Filtro de Kalman Extendido (EKF, del inglés Extended Kalman Filter). La utilización de CasADi e Ipopt 
proveen solvers numéricos que permiten obtener soluciones sumamente rápido. La calidad de los estimados 
obtenidos por MHE nos permiten considerar a éste algoritmo como un reemplazo válido para el popular Filtro 
de Kalman, aún en sistemas que requieren operación en tiempo real. 

Palabras claves: Estimación de Estados, Fusión de Sensores, Estimación de Horizonte Móvil, GNSS, IMU. 

 

I. Introduction 

Navigation aims to solve the problem of determining the position, velocity and orientation of an object in space 
using different sources of information. If we want to control efficiently an unmanned vehicle, its position, 
velocity and orientation should be known as accurately as possible. The integration of Global Navigation Satellite 
Systems (GNSS) and Inertial Measurement Units (IMU) is the state of the art among navigation systems (Polóni et 
al., 2015), (Vandersteen et al.,2013). It involves non-linear measurement equations combined with rotation 
matrices, expressed through Euler angles or quaternions, along with the cinematic models for the rigid body's 
translation and rotation in space. Traditionally, the Extended Kalman Filter (EKF) (Lefferts et al., 1982; 
MarkleyandSedlak, 2008; Roumeliotis and Bekey, 1999), Unscented Kalman Filter (UKF) (Crassidis and Markley, 
2003; Rhudyet al., 2013) or the Particle Filter (PF) (Carmi and Oshman,2009; Cheng and Crassidis, 2004) are used 
to solve the navigation problem. 

Recently, the use of non-linear observers have been proposed as an alternative to the different types of Kalman 
filters and statistical methods. However, there is still little literature on the subject. Grip et al. (2012) present an 
observer for estimating position, velocity, attitude, and gyro bias, by using inertial measurements of 
accelerations and angular velocities, magnetometer measurements, and satellite-based measurements of 
position and (optionally) velocity. Vandersteen et al. (2013) use a Moving Horizon Estimation (MHE) algorithm in 
real-time to estimate the orientation and the sensor calibration parameters applied to two space mission 
scenarios. In the first scenario, the attitude is estimated from three-axis magnetometer and gyroscope 
measurements. In the second scenario, a star tracker is used to jointly estimate the attitude and gyroscope 
calibration parameters. In order to solve this constrained optimization problem in real time, an efficient 
numerical solution method based on the iterative Gauss–Newton scheme has been implemented and specific 
measures are taken to speed up the calculations by exploiting the sparsity and band structure of matrices to be 
inverted. In Poloni et al. (2015) a nonlinear numerical observer for accurate position, velocity and attitude 
estimation including the accelerometer bias and gyro bias estimation is presented. A Moving Horizon Observer 
(MHO) processes the accelerometer, gyroscope and magnetometer measurements from the IMU and the position 
and velocity measurements from the GNSS. The MHO is tested off-line in the numerical experiment involving the 
experimental flight data from a light fixed-wing aircraft. 

Both EKF and MHE are based on the solution of a least-squares problem. While EKF use recursive updates to 
obtain the estimates and the error covariance matrix, MHE use a finite horizon window and solve a constrained 
optimization problem to find the estimates. In this way, the physical limits of the system states and parameters 
can be modeled through the optimization problem's constraints. The omission of this information can degrade 
the estimation algorithm performance (Haseltine and Rawlings, 2005). Unfortunately, the Kalman based filters 
do not explicitly incorporate restrictions in the estimates (states and/or parameters) and, because of this, several 
ad-hoc methods have been developed (Simon, 2010; Simon and Chia, 2002; Hall and McMullen, 2004; Teixeiraet 
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al., 2008; Simon and Simon, 2010; Ko and Bitmead,2007). These methods lead to sub-optimal solutions at best and 
can obtain non-realistic solutions under certain conditions, specially when the statistics of the unknown variables 
are chosen poorly. On the other hand, MHE solves an optimization problem to find the system estimates on each 
sample step, providing a theoretical framework for theoretic frame for constrained state and parameter 
estimation. 

 
In this work it will be assumed that the reader is familiar with some of the many coordinate frames used for 

navigation. If needed, the work of Bekir (2007) provides an excellent introduction to these topics. In particular, 
these coordinate frames will be used: 

1. Body reference frame, referred as Body and by the superindex𝑏. 
2. Earth-Centered Earth-Fixed, referred as ECEF and by the superindex𝑒. 
3. East-North-Up, referred as ENU and by the superindex𝑛. 
This work is organized as follows: in Section II the problem formulation is presented. Section III describes the 

aspects of the Moving Horizon Estimation algorithm and the Extended Kalman Filter implementation. In order 
tocompare the proposed method, a test simulation example is given in Section IV. Finally, in Section V 
conclusions of this work are stated. 

 
II. Problem Formulation 
 

The system equations –for a detailed description, see Poloni et al. (2015) and Bekir(2007)– that describe the 
rigid body dynamics in ECEF coordinates are given by: 

𝑝𝑒̇ = 𝑣 (1) 

𝑣𝑒̇ = −2𝑆(𝜔𝑖𝑒
𝑒 )𝑣𝑒 + 𝑎𝑒 + 𝑔𝑒(𝑝𝑒) (2) 

𝑞𝑏
𝑒̇ =

1

2
𝑞𝑏
𝑒 ⋅ 𝜔~𝑖𝑏

𝑏 −
1

2
𝜔~𝑖𝑒
𝑒 ⋅ 𝑞𝑏

𝑒 (3) 

𝛼̇ = 0 (4) 

𝛽̇ = 0 (5) 

where 𝑝𝑒  is the position in ECEF coordinates, 𝑣𝑒  is the linear velocity in ECEF coordinates, 𝑎𝑒is the linear 
acceleration in ECEF coordinates and  𝑔𝑒  is the gravity vector in ECEF coordinates. The gravity vector is a function 
of the position and is modeled using the 𝐽2 gravity model (Hsu, 1996). The known Earth’s angular velocity around 
the ECEF z-axis is represented by vector 𝜔𝑖𝑒

𝑒  and 𝜔~𝑖𝑏
𝑏 = [0;𝜔𝑏]𝑇  is the quaternion representation of the angular 

velocities in body frame. The quaternion 𝑞𝑏
𝑒  determines the orientation of the rigid body in space and 𝛼and 𝛽 are 

the gyroscope and accelerometer bias, respectively. 
 

The measurement equations with measurement noise 𝜈 are given by: 

𝜔𝑚
𝑏 = 𝜔𝑏 + 𝛼 + 𝜈𝜔 (6) 

𝑎𝑚
𝑏 = 𝑅(𝑞𝑏

𝑒)𝑇𝑎𝑒 + 𝛽 + 𝑣𝑎 (7) 

𝑚𝑚
𝑏 = 𝑅(𝑞𝑏

𝑒)𝑇𝑚𝑒 + 𝑣𝑚 (8) 

𝑝𝑚
𝑒 = 𝑝𝑒 + 𝑣𝑝 (9) 

𝑣𝑚
𝑒 = 𝑣𝑒 + 𝑣𝑣 (10) 

 
where 𝑚𝑒 is a known vector that contains the values of the magnitude of the terrestrial magnetic field given our 
current latitude and longitude1, 𝜔𝑏 and 𝑎𝑒  are the angular velocity and linear acceleration vectors in body and 

 

1 This data is tabulated and can be obtained from https://www.ngdc.noaa.gov/geomag-web 
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ECEF coordinates, respectively. The matrix 𝑅(𝑞𝑏
𝑒) is the rotation matrix associated with the current orientation 

quaternion. 
In order to use GNSS data with Eqs. (1)-(5), we need to convert it to ECEF coordinates. This can be done 

usingthefollowingequations: 

𝑥𝑒 = (𝑁𝑒 + ℎ)𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆

𝑦𝑒 = (𝑁𝑒 + ℎ)𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜆

𝑧𝑒 = (𝑏2𝑁𝑒 𝑎2⁄ + ℎ)𝑠𝑖𝑛𝜙

 (11) 

where 

𝑁𝑒 =
𝑎2

√𝑎2𝑐𝑜𝑠2𝜙 + 𝑏2𝑠𝑖𝑛2𝜙
 

is the Earth's east-west radius of curvature, 𝜙 is the latitude in radians, 𝜆 is the longitude in radians, ℎ is the 
altitude in meters, 𝑎 = 6378137𝑚 and 𝑏 = 6356752.3142𝑚 are the major and minor axes of the Earth 
reference ellipsoid, respectively. 

The set of Eqs. (1)-(5) model the position, velocity and orientation of a vehicle in ECEF coordinates. However, 
if we wish to travel short distances it is convenient to use ENU coordinates and work in a local reference frame. 
The steps to convert from ECEF to ENU are the following: 

1. Determine the latitude, longitude and altitude of the initial reference position (𝜙0, 𝜆0, ℎ0) and calculate 
its ECEF coordinates using equation (11) to obtain vector 𝑝0

𝑒 = [𝑥0
𝑒 , 𝑦0

𝑒 , 𝑧0
𝑒]𝑇. This position will be the 

origin of the ENU coordinate system. 
2. Transform the incoming GNSS measurements to ECEF coordinates using equation (11) to obtain 𝑝𝑒  and 

compute the relative displacements in ENU coordinates using the following: 

𝑝𝑛 = 𝑅𝑛
𝑒(𝜙0, 𝜆0)

𝑇(𝑝𝑒 − 𝑝0
𝑒) (12) 

 where 𝑅𝑛
𝑒(𝜙0, 𝜆0) is the ENU to ECEF rotation matrix and depends on the initial latitude and longitude 

(𝜙0, 𝜆0).  
The ENU to ECEF rotation matrix is given by two rotations (J. Sanz-Subirana& Hernández-Pajares, 2011): 

1. A clockwise rotation over east-axis by an angle 90 − 𝜙 to align the up-axis with the z-axis. 
Thatis𝑅1(−(𝜋 2⁄ − 𝜙)). 

2. A clockwise rotation over the z-axis by an angle 90 + 𝜆 to align the east-axis with the x-axis. 
Thatis𝑅3(−(𝜙 2⁄ + 𝜆)). 

 
Where rotation matrices are defined as follows: 

𝑅1(𝜃) = [
1 0 0
0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
0 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (13) 

𝑅2(𝜃) = [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃
0 1 0

𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
] (14) 

𝑅3(𝜃) = [
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

] (15) 

in matrixform, weobtain 

[
𝑥𝑒

𝑦𝑒

𝑧𝑒
] = 𝑅3(−(𝜙 2⁄ + 𝜆))𝑅1(−(𝜋 2⁄ − 𝜙)) [

𝑥𝑛

𝑦𝑛

𝑧𝑛
] (16) 

where we assume that the x-axis points to the East when using ENU coordinates. Taking into account the 
properties of rotation matrices, the ECEF to ENU transformation is obtained through the transpose of the matrix 
given by the previous equation. In this way, equation (16) gives a formula to convert coordinates from ENU to 
ECEF and from ECEF to ENU. 
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By using ENU, we establish a local coordinate system relative to the reference position 𝑝0
𝑒. We must replace 

our orientation quaternion from 𝑞𝑏
𝑒  to 𝑞𝑏

𝑛. Besides, we must be very careful and know exactly in which frame of 
reference each of the parameters, constants and sensor measurements are given in order to apply the 
corresponding rotations to them. 

 
III. Implementation details 

 
A. MHE implementation 
 
The MHE implementation follows the algorithm presented in the work of Rao et al. (2001, 2003). In our case, 

the vector of differential and algebraic states are defined as 

𝑥 = [𝑝𝑛𝑣𝑛𝑞𝑏
𝑛𝛼𝛽]𝑇 (17) 

𝑧 = [𝜔𝑏𝑎𝑛]𝑇 (18) 

and the measurement vector is defined as 

𝑦 = [𝜔𝑚
𝑏 𝑎𝑚

𝑏 𝑚𝑚
𝑏 𝑝𝑚

𝑒 𝑣𝑚
𝑒 ]𝑇 (19) 

The cost function 𝛹 that will be minimized with respect to 𝑥𝑘−𝑁∨𝑘, 𝑧𝑘−𝑁∨𝑘 and 𝑤𝑘̂ is defined as 

𝛹𝑘
𝑁 = ‖1 − ‖𝑞𝑏

𝑛(𝑘 − 𝑁)‖2
2‖𝑃0

2 + ‖𝑥𝑘−𝑁∨𝑘 − 𝑥̄𝑘−𝑁∨𝑘‖𝑃1
2 + ‖𝑧𝑘−𝑁∨𝑘 − 𝑧̄𝑘−𝑁∨𝑘‖𝑃2

2

+ ∑ ‖𝑤̂𝑗∨𝑘‖𝑄
2

𝑘

𝑗=𝑘−𝑁

+ ‖𝑣𝑗∨𝑘‖𝑅
2

 
(20) 

Given that the quaternion 𝑞𝑏
𝑛̂ must have unit norm, the constraint ‖𝑞𝑏

𝑛‖2
2 = 1 could be included. However, to 

avoid the computational cost of this restriction, the first term of 𝛹, which penalizes its violation at  𝑘 − 𝑁, and 
the following set of constraints 

[

−1
−1
−1
−1

] ≤ 𝑞𝑏
𝑛 ≤ [

1
1
1
1

] (21) 

are added to the problem. 
 
The horizon length 𝑁 and the values of the weights 𝑃0, 𝑃1, 𝑃2, 𝑄 and 𝑅 were chosen by a trial and error 

procedure as 𝑁 = 5, 𝑃0 = 0.1, 𝑃1 = 𝐼, 𝑃2 = 𝐼, 𝑄 = 0.001𝐼 and 𝑅 =
𝑑𝑖𝑎𝑔([10,10,10,10,10,10,5,5,5,1,1,1,1,1,1]). The resulting MHE constrained non-linear optimization problem 
is solved with CasADi (Andersson, 2013) and Ipopt (WächterandBiegler, 2006). 

 
B. EKF implementation 
 
The implementation of the Extended Kalman Filter follows the standard procedure; however, there are a 

couple of subtleties. Firstly, gyroscope and accelerometer readings are treated as control inputs instead of as 
measurements. To that end, 𝜔𝑏 and 𝑎𝑛, which were previously regarded as algebraic states, are expressed as 
functions of the inputs  𝜔𝑚

𝑏  and 𝑎𝑚
𝑏  and subsequently eliminated from the problem formulation. The differential 

states remain the same as in the MHE formulation, while the measurement vector is comprised of the remaining 
data readings, namely, 

𝑦 = [𝑚𝑚
𝑏 𝑝𝑚

𝑒 𝑣𝑚
𝑒 ]𝑇 (22) 

And secondly, the quaternion 𝑞𝑏
𝑛 must be renormalized at each time step, given that there is no way to take 

this constraint into account in the EKF, as was done in the MHE implementation. 
 
The covariance matrices 𝑄 and 𝑅 of the EKF are chosen as the inverse of the weighting matrices employed in 

the MHE formulation, given that a smaller covariance in the former must correspond to a bigger weight, i.e., 
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“trust”, in the latter. Therefore, the covariance matrices are defined as 𝑄 = 1000𝐼 and 𝑅 =
𝑑𝑖𝑎𝑔([0.2,0.2,0.2,1,1,1,1,1,1]). 

 
IV. Example 
 
In  the  following  example, we  will perform a manoeuvre using Gazebo and ROS to run a simulation of the 

Husky unmanned ground vehicle moving to the following set of waypoints: 𝑤1 = [5; 0; 0]𝑇, 𝑤2 = [15; 10; 0]𝑇, 
𝑤3 = [20; 10; 0]𝑇, 𝑤4 = [30; 0; 0]𝑇 and 𝑤5 = [35; 0; 0]𝑇. As stated before, the vehicle is equipped with GNSS 
and IMU sensors, which will be used to estimate the position and orientation in ENU coordinates using MHE and 
EKF. Both of these estimated values will be compared to the true values. 

Figures 1, 3 and 5 show the true position 𝑝𝑛 and its estimates 𝑝𝑛 in ENU coordinates. It can be seen that both 
the MHE and EKF provide good estimates. Figures 1 and 3 show that both estimators are able to follow the changes 
on the x and y axis. Since the vehicle is moving on flat terrain, the z coordinate is only affected by noise (see Fig. 
5). Figures 2, 4 and 6 show the difference 𝑝𝑛 − 𝑝𝑛. It can be seen that MHE error is slightly smaller on the x and 
y axis, while EKF filters slightly better the noise on the z axis. 

 

Figure 1: position in the x-axis [m]  Figure 2: position error in the x-axis [m] 

 Figure 3: position in the y-axis [m]  Figure 4: position error in the y-axis [m] 
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 Figure 5: position in the z-axis [m]  Figure 6: position error in the z-axis [m] 

 
The orientation quaternion 𝑞𝑛 and its estimates 𝑞𝑛 are shown in Figures 7, 9, 11 and 13, where it can be seen 

a similar behaviour than the one obtained from the position. MHE performs a better estimation of the states that 
change through time --𝑞0

𝑛 and𝑞3
𝑛--, as it can be seen in Figures 7, 8, 13 and 14, while EKF is able to do a slightly 

better job at filtering the noise on 𝑞1
𝑛 and 𝑞2

𝑛, as it can be seen in Figures 9, 10, 11 and 12. 
The results obtained by MHE can be attributed to the fact that: i) MHE uses more measurements to obtain the 

current estimate; ii) MHE does not assume Gaussian distribution for the  process and measurement noises within 
the estimation horizon, such as the EKF. 

Finally, Table 1 shows the mean and the standard deviation of the squared error between the real state and the 
estimated state over 50 realizations of the same experiment. It can be seen that in average, the position estimates 
show a smaller mean squared error with EKF, while the velocity estimates show a smaller error with MHE. 
Finally, the orientation quaternion shows the same behaviour as commented earlier, where MHE  performs a 
better estimation of the states that change through time --𝑞0

𝑛 and 𝑞3
𝑛--, while EKF does a better job at filtering the 

noise on 𝑞1
𝑛 and 𝑞2

𝑛. The average execution time for each sample was 5.293 milliseconds for each MHE iteration 
and 0.211 milliseconds for each EKF iteration on an Intel i5 desktop computer. 

 

Figure 7: 𝑞0
𝑛  Figure 8: 𝑞0

𝑛 − 𝑞0
𝑛 
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Figure 9: 𝑞1
𝑛 Figure 10: 𝑞1

𝑛 − 𝑞1
𝑛 

Figure 11: 𝑞2
𝑛  Figure 12: 𝑞2

𝑛 − 𝑞2
𝑛 

Figure 13: 𝑞3
𝑛   Figure 14: 𝑞3

𝑛 − 𝑞3
𝑛 

 
V. Conclusion 
 
In this work we employed MHE to estimate the position, velocity and orientation of an unmanned ground 

vehicle by fusing data from GNSS and IMU sensors. These estimates are compared with the classic benchmark 
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algorithm, the EKF and the true values. MHE is able to perform as good as EKF, even at a fast rate, which indicates 
that it can easily be used for real time estimation. Since MHE solves a non linear optimization problem on each 
iteration, the addition of constraints and bounds such as the ones described by Eq. (21), is straight forward. 

Since the solution of the navigation problem requires a very specific set of knowledge and the use of different 
coordinate systems often leads to confusion, we also showed all the necessary steps to perform position, velocity 
and orientation estimation either in ECEF or ENU coordinates. One of the issues that remains open is how to tune 
both MHE and EKF weight matrices in order to provide better results.  

If we want to run these algorithms with real sensors, special care must be taken in order to account for different 
sampling rates, especially when typical GNSS receivers sampling rate is around 1 Hz to 10 Hz and commercial 
IMUs sampling rate is around 500 Hz. 

 
 Mean (x 10e-3) Std. Dev (x 10e-3) 

MHE EKF  MHE EKF 
px [m] 0.30643   0.28912 0.36298 0.33779 

py [m] 0.18676  0.17014 0.22421 0.20285 

pz [m] 0.02815     0.00870 0.03828 0.01201 

vx [m/s] 0.93519  1.70043 1.28402 2.32408 

vy [m/s] 0.92798  1.67139 1.26584 2.26883 

vz [m/s] 1.09800  2.12559 1.50401 2.90566 

q0 0.19255  1.08827 0.28763 1.17203  

q1 0.22829  0.06821 0.31084 0.09292 

q2 0.22064  0.07187 0.30205 0.09909 

q3 1.73780  5.35359 2.38613 5.35354 

Table 1: Mean and standard deviation of the squared error. 
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