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Abstract 
The integration of down-looking camera with an in-ertial measurement unit (IMU) sensor makes possible to 

provide a lightweight and low-cost pose estimation system for unmanned aerial vehicles (UAVs) and micro-UAVs 
(MAVs). Recently, the authors developed an algorithm for IMU and exteroceptive sensor fusion filter for position 
and orientation estimation. The aim of the estimation is to be used in the outer control loop of an UAV for position 
control. This work presents an experimental set up to test that algorithm using an industrial robot to produce 
accurate planar trajectories as a safe alternative to testing the algorithm on real UAVs. The results of the IMU-
camera fusion estimation for linear positions and linear velocities show an error admissible to be integrated on 
real UAVs. 

Keywords: sensor fusion, inertial measurement unit, monocular camera, industrial robot, error-state Kalman filter. 

 
Resumen 

La integración de una cámara orientada hacia abajo con un sensor de unidad de medición inercial (IMU, por 
las siglas en inglés de Inertial Measurement Unit) hace posible proporcionar un sistema de estimación de pose 
liviano y de bajo costo para vehículos aéreos no tripulados (UAVs, por Unmanned Aerial Vehicle) y micro-UAVs 
(MAVs, por Micro Unmanned Aerial Vehicle). Recientemente, los autores desarrollaron un algoritmo de un filtro 
de fusión de señales de una IMU y un sensor exteroceptivo para la estimación de la posición y la orientación. El 
objetivo de la estimación es utilizarlo en el bucle de control exterior de un UAV para el control de posición. Este 
trabajo presenta una configuración experimental para probar ese algoritmo utilizando un robot industrial para 
producir trayectorias planas precisas como una alternativa segura a probar el algoritmo en UAV reales. Los 
resultados de la estimación de fusión IMU-cámara para posiciones lineales y velocidades lineales muestran un 
error admisible para ser integrado en UAVs reales. 

Palabras claves: fusión sensorial, unidad de medición inercial, cámara monocular, robot industrial, filtro de error de 

estado de Kalman. 

 

I Introduction  

The autonomous navigation of unmanned aerial vehicles (UAVs) in GPS-denied environments is currently 
possible by using controllers that employs an on-board computation of the feedback signals of the vehicle pose 
(position and orientation) using multiple sensors –e.g., IMUs (Inertial Measurement Unit), cameras (monocular, 
stereo, and RGB-D), and/or laser range finders– combined with efficient algorithms for data fusion that together 
minimize the uncertainty of the individual sensor measurements. 

Concerning the state estimation for UAVs and MAVs, Kumar and Michael (2012) highlighted that the 
integration of camera sensors with IMUs enable a lightweight alternative to designs based on laser range finders 
or RGB-D cameras (that provide dense and rich three-dimensional information but have a trade-off with payload 
constraints and computational resources required). With the aim to (i) use low-weight and low-cost sensors, (ii) 
use efficient real-time algorithms to reduce computational resources, (iii) use on-board computation to avoid the 
low-latency and possible interruptions of the communication for off-board computation, and (iv) reduce the 
energy consumption to increase the autonomy, the authors developed a sensor fusion algorithm (PerezPaina et 
al., 2017) for IMU and camera sensors that is further experimentally evaluated in this work. 

In order to intensively test a sensor fusion algorithm, the first option is to use a real UAV but involves a risk of 
damage if the algorithm fails while the flight takes place. The main idea of the present work is to test the algorithm 
on-line but in a detached way from the real UAV’s flights. So it is necessary to generate an accurate reference 
motion using another facility, in this case, an industrial manipulator is chosen; see Fig.1. 
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Fig. 1: Experimental setup to test the IMU-camera fusion estimation algorithm. 

 
In this work, the proposed experimental set up is to generate motions for an IMU and a down-looking camera 

mounted on the end-effector of a robot manipulator to emulate the signals emitted by an UAV in motion. The 
measurements of the IMU and the down-looking camera are fused using the algorithm proposed PerezPaina et 
al. (2017). The aim of this work is to validate the sensor fusion for a motion parallel to the ground plane, including 
linear position and linear velocity, to be used in an UAV on-board controller, as the proposed Pucheta et al. (2016). 
The full pose estimation will be tackled in future work. The experiments show that the errors in the 
measurements are admissible to be integrated in the real system. 

The article is organized as follows. Section II introduces the description of the robot manipulator used to 
generate the reference motion. Then, it describes the selection of the fiducial visual marker used to estimate the 
pose of the down-looking camera. Next, the rigid transformations used in the IMU-camera sensors are detailed. 
Section III briefly reviews the fusion estimation algorithm. Section IV describe the implementation and the 
obtained results for two different paths, and section V presents the conclusions and future work. 

II Materials and methods 

A. Welding manipulator 
An industrial robot manipulator, CLOOS Romat 310, is used in this work to generate accurate trajectories. It is 

available from the Mechanical Engineering’s Department of the FRC-UTN. This robot is a six- degrees-of-freedom 
serial anthropomorphic arm and is equipped with the ROTROL control system and a proprietary programming 
language named CAROLA. With respect to the average size of the welding robots existing in the market, its 
workspace is comparatively large (it is often combined with an additional translational axis to weld large 
mechanical parts). Its workspace is large enough to include reference trajectories for UAV calibration purposes. 

The robot can be programmed by teaching some way-points to approximate the end-effector near the working 
volume, and from that point, several trajectories can be defined using geometric templates referenced to a 
predefined coordinate system. For instance, a program can be referenced to the home position, to a used-defined 
frame of reference, or can be relative to a frame located at the base of the robot; in this work the latter frame is 
chosen. The end-effector pose is defined by a 6-tuple of coordinates, 3 for the Cartesian positioning (𝑥, 𝑦, 𝑧) with 
respect to a frame located at the base of the robot and 3 for the orientation (𝛼, 𝛽, 𝛾) relative to the home frame 
orientation. Because its welding capabilities, the programming language allows the user to define many 
characteristics for the interpolation of motions, several ways to approach the sharp corners of the trajectories in 
a controlled form, avoiding overlapping or oscillation through the target trajectories. This makes the robot an 
valuable research platform to generate accurate free-form paths in SE(3). 

https://doi.org/10.33414/rtyc.37.101-111.2020
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B. Visual marker for pose estimation 
A fiducial visual marker on the ground is used to obtain an estimation of the absolute pose of the down-looking 

camera. To detect and track this marker is easier than to employ natural features. Visual marker with geometric 
forms like square are better than other shapes because they have four remarkable points (corners) that can be 
used to determine the pose with respect to the camera, while inner region can be used for identification. Different 
methods are used for identification and binary patterns are the most usual. Among the predefined pattern for 
visual markers available in the literature, the ArUco dictionary of markers (Garrido-Jurado et al., 2014), which 
maximize intermarker distance is chosen. This allow to reduce the size of the dictionary to the minimum needed, 
increasing the speed of detection, when more than one marker is used. 

The ArUco algorithm is integrated with the OpenCV library (Bradski & Kaehler, 2008) to compute the rigid 
transformations between the camera and the maker frame systems. 

C. Reference frame systems for the used setup 
The reference systems of the used setup can be seen in Fig. 2, where {i} is the inertial or navigation frame 

attached to the ground visual marker, {b} the body frame (coincident with the IMU frame), and {c} the camera 
frame. 

The translation vector 𝒕𝑐𝑖
𝑖 ∈ ℝ3 and the orientation matrix 𝑹𝑐

𝑖 ∈ 𝑆𝑂3 relating the navigation and the camera 
frames, are estimated by the visual algorithm. The translation vector 𝒕𝑖𝑏

𝑖 ∈ ℝ3  and the orientation matrix 𝑹𝑏
𝑖 ∈

𝑆𝑂3 relating the navigation and the body frame, are estimated by the fusion filter. Last, the relative pose given by 
the vector𝒕𝑐𝑏

𝑐 ∈ ℝ3 and the matrix 𝑹𝑏
𝑐 ∈ 𝑆𝑂3, relating the camera and body frames, is a known data measured by 

hand. As can be seen in Fig. 2, this relative pose is given only by a translation in the z coordinate and therefore 
𝑹𝑏

𝑐 = 𝑰. 
 

 

Figure 2: Three frame systems and their rigid transformations represented by curved arrows: {c} is the frame system located at 
the optical center of the camera, {i} represents the inertial or navigation frame system, and {b} is the frame with unknown pose to 

be referred with respect to {i}. For each frame, local arrows in red, green, and blue color represent the x, y, and z axes, 
respectively. 

D. Reference frame transformation 
Both the relative position and orientation between the camera reference system {c}, and the reference system 

of the ground marker attached to inertial frame {i}, can be written as 𝒕𝑐𝑖
𝑐 ∈ ℝ3 and 𝑹𝑖

𝑐 ∈ 𝑆𝑂3, respectively (Ma et 
al., 2010). For vector 𝒕𝑐𝑖

𝑐 , the sub-index ci indicates the starting {c}, and target {i}, reference systems. The supra-
index indicates the frame in which the coordinates of this vector are expressed. Concerning the convention for 
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the orientation, the matrix 𝑹𝑖
𝑐, uniquely represents the orientation of the reference system {i} with respect to the 

camera reference system {c}. This matrix can also be used to change the coordinates of a vector from the {i} 
reference system to the camera reference system {c} (Pucheta et al., 2014). 

As was stated, using the visual algorithm the pose given by 𝒕𝑐𝑖
𝑐  and 𝑹𝑖

𝑐 is obtained, for which the inverted 
transformation needed by the fusion filter 𝒕𝑖𝑐

𝑖  and 𝑹𝑐
𝑖  is computed. 

In order to compute the elements of the unknown pose, 𝑹𝑏
𝑖  and 𝒕𝑖𝑏

𝑖 , a geometric analysis is performed. Vector 
addition of relative positions can be formulated as 

 𝒕𝑖𝑏
𝑖 = 𝒕𝑖𝑐

𝑖 + 𝒕𝑐𝑏
𝑖  (1) 

where, 𝒕𝑖𝑐
𝑖  and 𝒕𝑐𝑏

𝑖  respectively represents the same vectors as 𝒕𝑐𝑖
𝑐    (although in different sense) and 𝒕𝑐𝑏

𝑐  but 
referred to the coordinate system {i} to make the sum consistent. This pair of positions can be obtained by using 
the change of coordinates matrix 𝑹𝑐

𝑖 , which is the inverse (and also the transpose for being orthogonal) of 𝑹𝑖
𝑐, 

computed by the detection algorithm. Then, (1) can be written as 

 𝒕𝑖𝑏
𝑖 = 𝑹𝑐

𝑖 𝒕𝑖𝑐
𝑐 + 𝑹𝑐

𝑖 𝒕𝑐𝑏
𝑐  (2) 

Provided that 

 𝒕𝑖𝑐
𝑐 = −𝒕𝑐𝑖

𝑐 , (3) 

(1) can also be written as 

 𝒕𝑖𝑏
𝑖 = (𝑹𝑖

𝑐)𝑇(𝒕𝑐𝑏
𝑐 − 𝒕𝑐𝑖

𝑐 ) (4) 

On the other hand, Fig. 2 also depicts that a vector represented in the frame system {b} can be changed of basis 
to be referred to the system {i}, and that is equivalent to a indirect change from {b} to {c} followed by a change 
from {c} to {i}. 

An arbitrary vector 𝒗𝑏 can be changed of reference system from {b} to {i} by means of 

 𝒗𝑖 =  𝑹𝑏
𝑖 𝒗𝑏 (5) 

or, using an intermediate frame, by computing 

 𝒗𝑖 =  𝑹𝑐
𝑖 𝑹𝑏

𝑐 𝒗𝑏 (6) 

where, clearly, the matrix that represents the orientation of the frame system {b} with respect to the frame 
system {i} is the same that produces the change of basis for a vector from {b} to {i}. Therefore, the orientation of 
frame {b} with respect to frame {i} can be written as 

 𝑹𝑏
𝑖 =  𝑹𝑐

𝑖 𝑹𝑏
𝑐  (7) 

or, using the data supplied by the algorithm described by Garrido-Jurado et al. (2014), as 

 𝑹𝑏
𝑖 =  (𝑹𝑖

𝑐)𝑇𝑹𝑏
𝑐 . (8) 

Figure 3 shows real setup, similar to the schematic view in Fig.2, indicating the three reference system evolved, 
{i}, {c}, and {b}. The 3D printed sensor holder, which rigidly attach the camera and IMU (fixed to the manipulator 
end-effector) can be seen in the zoom area. 
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Figure 3: Yellow and orange arrows represent relative position and orientation between different systems. Red, green, and 

blue arrows represent the x, y, and z axis, respectively. 

III. IMU-Camera fusion 

The implemented sensor fusion algorithm is based on the Error-State Kalman Filter (ESKF), which performs a 
loosely coupled sensor fusion (Madyastha et al., 2011; Solà, 2015). The inertial unit is composed of a three axis 
accelerometer and a three axis gyroscope. The implemented filter is based on the described by Perez Paina et al. 
(2017). 

A. Error-state Kalman Filter 
In the ESKF, the state is expressed as a nominal value plus an error or perturbation, 𝒙 = 𝒙𝑛 ⊕ δ𝒙 , where the 

symbol ⊕ (composition) is an ordinary addition for position and velocity, and a quaternion product for the 
orientation. The ESKF performs the nominal state propagation while estimating the error state used to correct 
this integration. 

The formulation of the ESKF is based on the system stochastic model, given by 

 �̇� = 𝑓(𝒙, 𝒖, 𝒗) (9) 
 𝒛 = ℎ(𝒙, 𝒗),  (10) 

where the state has to be expressed in terms of the nominal and the error parts.  
The nominal state 𝒙 = [𝒑𝑇 𝒗𝑇 𝒒𝑇]𝑇  is composed of the position 𝒑 , the linear velocity 𝒗, and the orientation 

expressed as a unit quaternion 𝒒, all with respect to an inertial frame. The inertial measurements are used as 
input in the process model (9), with 𝒖 = [𝒂𝑚

𝑇 𝝎𝑚
𝑇 ]𝑇. On the other hand, the exteroceptive sensor measurement 

of (10), given here by a visual monocular pose estimation, is composed of the absolute position and orientation, 
i.e. 𝒛𝑖 = [𝒑𝑖

𝑇 𝒒𝑖
𝑇]𝑇. 

The prediction stage of the ESKF filter is given by 

 �̂�𝑘
− =  𝑓(�̂�𝑘−1, 𝒖𝑘−1, 𝟎) (11) 

 𝑷𝑘
− = 𝑭𝑘−1𝑷𝑘−1𝑭𝑘−1

𝑇 + 𝑸𝑘−1 (12) 

where (11) is obtained from the discretization of (9) and is used to integrate the nominal state from the inertial 
measurements. Equation (12) propagates the covariance matrix representing the estimation uncertainty and 
incorporates the sensor noise of (9), 𝒘 ∼ 𝒩(𝟎, 𝑸), which has also to be obtained from the continuous-time model. 

https://doi.org/10.33414/rtyc.37.101-111.2020
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On the other hand, the update stage of the ESKF is given by 

 𝑲𝑘 = 𝑷𝑘
−𝑯𝑘

𝑇(𝑯𝑘𝑷𝑘
−𝑯𝑘

𝑇 + 𝑪𝑘)−1 (13) 
 �̂� = �̂�𝑘

− ⊕ 𝑲𝑘(𝑧𝑘 ⊖ ℎ(�̂�𝑘
−)) (14) 

 𝑷𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘
− (15) 

which uses the camera pose measurement 𝑧 in (14), and the sensor model given by (10). Equation (13) 
incorporates the measurement noise of (10), 𝒗 ∼ 𝒩(𝟎, 𝑹). 

As usual, the filter orientation error is denoted in its minimal representation, avoiding redundant parameters 
that can produce singularities when applying the needed additional constraints. In the context of the Kalman 
filter it is also known as a multiplicative error model (Markley, 2004; Markley, 2003). Thus, the filter estimation 
error is 

 𝒙 ⊖ �̂� = [

𝒑 − �̂�

𝒗 − �̂�
�̂�∗ ⊗ 𝒒

] = [

𝛿𝒑
𝛿𝒗
𝛿𝒒

] ≡ 𝛿𝒙, (16) 

where for a small orientation error, 𝛿𝒒 can be expressed as 

 δ𝒒 = [
δ𝒒𝑤

δ𝒒𝑣
] = [

1
1

2
δ𝜽], (17) 

with δ𝜽 being the minimum orientation error representation. Then, the error 𝛿𝒙 is used to compute the 
covariance matrix 𝑷 = 𝔼[𝛿𝒙 𝛿𝒙𝑇], which describes the uncertainty in the filter estimation required in (12), (13), 
and (15). 

B. Process model based on inertial sensor measurements 
The kinematic model used for integrating the inertial measurements is applied in the prediction stage of the 

estimation filter. For the Kalman filter implementation, the discrete-time kinematic model is derived from the 
continuous-time model, which for the case of the error state Kalman filter has to be separated in: (1) model for 
the nominal state integration, and (2) model for the uncertainty propagation. 

 
1) Continuous-time model: The inertial sensor based kinematic continuous-time model is given by 

 �̇� = 𝒗, (18) 
 �̇� = 𝑹(𝒒)𝒂 + 𝒈𝑛, (19) 

 �̇� =
1

2
𝒒 ⊗ [

0
𝝎

], (20) 

where 𝑹(𝒒) is the matrix representation of the orientation given by the unit quaternion 𝒒, 𝒈𝑛 is the gravity 
acceleration expressed in the inertial frame, the symbol ⊗ represents the Hamilton product (Trawny and 
Roumeliotis, 2005) where the first quaternion component is the scalar value. 

The accelerometer and gyroscope inertial sensors model are 

 𝒂𝑚  =  𝒂 + 𝒘𝑎 (21) 
 𝝎𝑚  =  𝝎 + 𝒘𝜔 (22) 

where the subscript 𝑚 stands for measured value, which are composed of the true value plus an additive 
Gaussian noise 𝒘𝑎 ∼ 𝒩(𝟎, 𝜎𝑎

2𝑰) and 𝒘𝜔 ∼ 𝒩(𝟎, 𝜎𝜔
2 𝑰). 

By replacing (21) in (19) and (22) in (20), the continuous-time stochastic model of (9) is obtained, which gives 

 �̇� = 𝒗, (23) 
 �̇� = 𝑹(𝒒)(𝒂𝑚 − 𝒘𝑎) + 𝒈𝑛, (24) 

 �̇� =
1

2
𝒒 ⊗ [

0
(𝝎𝑚 − 𝒘𝜔)

], (25) 

Then, the nominal state evolution is given by 

 𝒑�̇� = 𝒗𝑛, (26) 
 𝒗�̇� = 𝑹(𝒒𝑛)𝒂𝑛 + 𝒈𝑛, (27) 
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 𝒒�̇� =
1

2
𝒒𝑛 ⊗ [

0
𝝎𝑛

], (28) 

and the error state by 

 δ�̇� = 𝒗, (29) 
 δ�̇� = −𝑹(𝒒𝑛)⌊𝒂𝑚×⌋δ𝛉 + 𝑹(𝒒𝑛)𝒘𝑎, (30) 
 δ�̇� = −⌊𝝎𝑚×⌋δ𝛉 − 𝒘𝜔, (31) 

The derivation of (26) to (31) follows Solà (2015) and Trawny & Roumeliotis (2005). 
As can be seen, the error state model of (29) to (31) is linear, which can be expressed as δ�̇� 

 δ�̇�  =  𝑨δ𝒙 + 𝑫𝒘 (32) 

with 𝒘 = [𝒘𝑎
𝑇 𝒘𝜔

𝑇 ]𝑇, and 

 𝑨 =  [

𝟎 𝑰 𝟎
𝟎 𝟎 −𝑹⌊𝒂𝑚×⌋

𝟎 𝟎 −⌊𝝎𝑚×⌋
] , 𝑫 =  [

𝟎 𝟎
−𝑹 𝟎
𝟎 −𝑰

], (33) 

with 𝑹≡ 𝑹(𝒒). 
2) Discrete-time model: In order to obtain the discrete-time model, here it is proposed to use the Euler integral 

solution of (26)-(31) for the nominal state and uncertainty propagation, respectively. The discrete-time evolution 
of the nominal state (omitting the subscript n), is then given by 

 𝒑𝑘 = 𝒑𝑘−1Δ𝑡 𝒗𝑘−1, (34) 
 𝒗𝑘 = 𝒗𝑘−1 + Δ𝑡𝑹(𝒒𝑘−1)𝒂𝑚,𝑘−1 + Δ𝑡𝒈𝑛, (35) 

 𝒒𝑘 = (𝑰 +
Δ𝑡

2
𝜴(𝝎𝑚,𝑘−1)) 𝒒𝑘−1, (36) 

where Δ𝑡 = 𝑡𝑘 − 𝑡𝑘−1 and 

𝜴(𝝎) = [
𝟎 −𝝎𝑇

𝝎 ⌊𝝎×⌋
] 

is a 4× 4 skew-symmetric matrix. Therefore, the state transition matrix of (12) results 

 𝑭𝑘 = 𝑒𝑨𝑘(𝑡𝑘−𝑡𝑘−1) = 𝑰 + 𝛥𝑡𝑨𝑘 , (37) 

where 𝑨 is given by (33). 
The discrete-time covariance matrix of the process noise is given by Simon (2006) 

 𝑸𝑘−1 = ∫ 𝑒𝑨(𝑡𝑘−𝜏)𝑡𝑘

𝑡𝑘−1
𝑫𝑸𝑐𝑫𝑇𝑒𝑨(𝑡𝑘−𝜏)𝑑𝜏. (38) 

A detailed representation of the sub-matrices of (38) can be found in Perez Paina et al. (2016). 

C. Observation model based on camera measurements 
The measurement vector of the visual pose estimation algorithm is composed of the position and orientation 

with respect to the inertial frame, i.e. 𝒛𝑖 = [𝒑𝑖
𝑇 𝒒𝑖

𝑇]𝑇. Hence, the measurement function is 𝒛𝑖 = ℎ(𝒙) + 𝒗, where 
𝝂 ∼ 𝒩(𝟎, 𝑹) is the additive Gaussian noise. In order to compute the filter innovation 𝝂, it is necessary to express 
the orientation using an unit quaternion, such that 𝝂 = 𝒛 ⊖ 𝒛 ̂− can be computed as an ordinary subtraction for 
the position and using the quaternion product for the orientation. Given the nominal predicted state, the 
measurement prediction is 𝒛 ̂− = ℎ(�̂�𝑛

−), and the innovation can be computed as 

 𝝂𝑖 = 𝒛𝑖 ⊖ 𝒛 ̂𝑖
− = [

𝒑𝑖

𝐪𝑖
] ⊖ [

𝒑 ̂𝑖
−

𝒒 ̂𝑖
−] 

 = [
𝒑𝑖 − 𝒑 ̂𝑖

−

(𝒒 ̂𝑖
−)∗ ⊗ 𝐪𝑖

] = [
𝛿𝒑𝑖

𝛿𝐪𝑖
], (39) 

and considering a small orientation error 

 δ𝒒𝑖 = [
δ𝒒𝑖,𝑤

δ𝒒𝑖,𝑣
] ≈ [

1
1

2
δ𝜽𝑖

], (40) 
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then, the minimal representation of the innovation is δ𝝂𝑖 = [δ𝒑𝑖
𝑇 δ𝜽𝑖

𝑇]𝑇. 
On the other hand, the Jacobian matrix 𝑯 of the measurement model, used in (13) and (15), has to be defined. 

Given the visual algorithm providing absolute position and orientation measurements, this matrix results 

 𝑯 = [
𝑰 𝟎 𝟎
𝟎 𝟎 𝑰

], (41) 

The covariance of the camera measurements, used in (13), is 𝑪 = diag(𝑪𝑝, 𝑪𝑞), which is composed of the 
covariance matrix to describe the uncertainty 𝑪𝑝 = 𝜎𝑝𝑖

2 𝑰 in the position and 𝑪𝛾𝑖
= 𝜎𝛾𝑖

2 𝑰 for the orientation 
expressed with Euler angles. For a more complex sensor, the measurement Jacobian matrix can be obtained as 
explained in Solà (2015). 

IV. Implementation and Results  

A. Implementation 
The experimental results were obtained using the following hardware equipment: inertial measurement unit 

from Microstrain model 3DM-GX1 where raw data was used, camera from The Imaging Source model 
DMM22BUC03 (USB 2.0, 640x480 px), with optical lens also from The Imaging Source model TBN3.5C-3MP (low 
distortion board lens M12x0.5mm, focal length 3.5mm). The fusion filter was implemented in C++ programming 
language using the computer vision library OpenCV version 3.3.0, with the contribution module (also v3.3.0) for 
the ArUco algorithm implementation, and the Eigen library v3.3 for the filter matrix operations. 

B. Results 
The experimental evaluation of the fusion filter was carried out using two different paths at constant linear 

velocity: a circle, and a square one. Figure 4 shows the estimation result with the circular path. In Fig. 4a the 𝑥𝑦 
path can be observed, the red line represents the real path generated by the robot manipulator, and the blue one 
is the estimation given by the fusion filter, whereas Fig. 4b shows the position in meters and the linear velocity 
in meter per seconds against the time given in seconds. Figure 5 shows the same as Fig. 4 but for the square path. 

As it can appreciated in the top view of the 𝑥𝑦-path given in Fig. 4a and 5a, the estimation presents more noise 
near the 𝑥 = 0 and 𝑦 = 0 planes. When approaching these particular points, the used visual algorithm gives an 
orientation estimation which oscillates between both sides of 𝑥 or 𝑦 axes. Then, when the camera measurement 
is inverted to obtain the pose with respect to the navigation frame, the orientation oscillation affects more the 
error in the translation estimation. The elimination of these effects will be the focus of next research. 

 

 
Fig. 4: Circular path: (a) Shows the reference path in red color and the estimated one in blue, and (b) shows the position 

and linear velocity vs. time. 
 

(a) (b) 
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Fig. 5: Square path: (a) Shows the reference path in red color and the estimated one in blue, and (b) shows the position 

and linear velocity vs. time. 

Conclusions 

This work presented preliminary results of experiments achieved to test a fusion algorithm to integrate the 
measurements of a down-looking camera with an inertial measurement unit sensor, which will be take part of 
the full pose feedback signal of a UAV control system. An industrial robot was used to generate planar trajectories 
at constant linear velocity, a circle and an square, to test the algorithm for position estimation. The results for 
each task show position and velocity estimation errors admissible to be integrated on real UAVs. Next 
experiments will include the orientation estimation to test the full pose estimation. It is also expected that the 
level of noise in the real UAV will be higher than the produced by the robot. 
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